
An Optimal Arc Consistency Algorithm for a Chain of
Atmost Constraints with Cardinality

Mohamed Siala1,2, Emmanuel Hebrard1,3, and Marie-José Huguet1,2
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Abstract. The ATMOSTSEQCARD constraint is the conjunction of a cardinality
constraint on a sequence of n variables and of n− q + 1 constraints ATMOST u
on each subsequence of size q.
This constraint is useful in car-sequencing and crew-rostering problems. In [18],
two algorithms designed for the AMONGSEQ constraint were adapted to this con-
straint with a O(2qn) and O(n3) worst case time complexity, respectively. In
[10], another algorithm similarly adaptable to filter the ATMOSTSEQCARD con-
straint with a time complexity of O(n2) was proposed.
In this paper, we introduce an algorithm for achieving Arc Consistency on the
ATMOSTSEQCARD constraint with a O(n) (hence optimal) worst case time
complexity. We then empirically study the efficiency of our propagator on in-
stances of the car-sequencing and crew-rostering problems.

1 Introduction

In many applications there are restrictions on the successions of decisions that can be
taken. Some sequences are allowed or preferred while other are forbidden. For instance,
in crew-rostering applications, it is often not recommended to have an employee work
on an evening or a night shift and then again on the morning shift of the next day.

Several constraints have been proposed to deal with this type of problems. The
REGULAR [12] and COST-REGULAR constraints [7] make it possible to restrict se-
quences in an arbitrary way. However, there might often exist more efficient algorithm
for the particular case at hand. For instance, filtering algorithms have been proposed
for the AMONGSEQ constraint in [6, 10, 19, 18]. This constraint ensures that all subse-
quences of size q have at least l but no more than u values in a set v. This constraint is
often applied to car-sequencing and crew-rostering problems. However, the constraints
in these two benchmarks do not correspond exactly to this definition. Indeed, there are
often no lower bound restriction on the number of values (l = 0). Instead, the number
of values in the set v is often constrained by an overall demand.

In this paper we consider the constraint ATMOSTSEQCARD. This constraint, posted
on n variables x1, . . . , xn, ensures that, in every subsequence of length q, no more than
u are set to a value in a set v, and that over all the sequence, exactly d are set to values
in v. In car-sequencing, this constraint allows to state that given an option, no sub-
sequence of length q can involve more than u classes of cars requiring this option,



and that exactly d cars require it overall. In crew-rostering problems, one can state, for
instance, that a worker must have at least a 16h break between two 8h shifts, or that a
week should not involve more than 40h of working time, while enforcing a total number
of worked hours over the scheduling period.

The rest of the paper is organized as follows: In Section 2 we give a brief state of the
art of the sequence constraints. Then in Section 3, we give a linear time (hence optimal)
algorithm for filtering this constraint. Last, in Section 4 we evaluate our new propagator
on car-sequencing benchmarks, before concluding in Section 5.

2 CSP and SEQUENCE Constraints

A constraint satisfaction problem (CSP) is a triplet P = (X ,D, C) where X is a set
of variables, D is a set of domains and C is a set of constraints that specify allowed
combinations of values for subsets of variables. We denote by min(x) and max(x)
the minimum and maximum values in D(x), respectively. An assignment of a set of
variables X is a tuple w, where w[i] denotes the value assigned to the variable xi. A
constraintC ∈ C on a set of variablesX defines a relation on the domains of variables in
X . An assignment w is consistent for a constraint C iff it belongs to the corresponding
relation. A constraint C is arc consistent (AC) iff, for every value j of every variable xi
in its scope there exists a consistent assignment w such that w[i] = j, i.e., a support.

There are several variants of the SEQUENCE constraints, we first review them and
then motivate the need for the variant proposed in this paper: ATMOSTSEQCARD.
In the following definitions, v is a set of integers and l, u, q are integers. Sequence
constraints are conjunctions of AMONG constraints, constraining the number of occur-
rences of a set of values in a set of variables.

Definition 1. AMONG(l, u, [x1, . . . , xq], v)⇔ l ≤ |{i | xi ∈ v}| ≤ u

Chains of AMONG Constraints: The AMONGSEQ constraint, first introduced in [2],
is a chain of AMONG constraints of width q slid along a vector of n variables.

Definition 2. AMONGSEQ(l, u, q, [x1, . . . , xn], v)⇔
∧n−q

i=0 AMONG(l, u, [xi+1, . . . , xi+q], v)

The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [1].
Then in [18, 19], two complete algorithms for filtering the AMONGSEQ constraint were
introduced. First, a reformulation using the REGULAR constraint using 2q−1 states and
hence achieving AC in O(2qn) time. Second, an algorithm achieving AC with a worst
case time complexity of O(n3). Moreover, this last algorithm is able to handle arbi-
trary sets of AMONG constraints on consecutive variables (denoted GEN-SEQUENCE),
however in O(n4). Last, two flow-based algorithms were introduced in [10]. The first
achieves AC on AMONGSEQ in O(n3/2 log n log u), while the second achieves AC on
GEN-SEQUENCE in O(n3) in the worst case. These two algorithms have an amortised
complexity down a branch of the search tree of O(n2) and O(n3), respectively.



Chain of ATMOST Constraints: Although useful in both applications, the AMONGSEQ
constraint does not model exactly the type of sequences useful in car-sequencing and
crew-rostering applications.

First, there is often no lower bound for the cardinality of the sub-sequences, i.e.,
l = 0. Therefore AMONGSEQ is unnecessarily general in that respect. Moreover, the
capacity constraint on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be
clustered together because a working station can only handle a fraction of the cars
passing on the line (at most u times in any sequence of length q). The total number of
occurrences of these classes is a requirement, and translates as an overall cardinality
constraint rather than lower bounds on each sub-sequence.

In crew-rostering, allowed shift patterns can be complex, hence the REGULAR con-
straint is often used to model them. However, working in at most u shifts out of q is a
useful particular case. If days are divided into three 8h shifts, ATMOSTSEQ with u = 1
and q = 3 makes sure that no employee work more than one shift per day and that there
must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the
lower bound on the number of worked shifts is global (monthly, for instance).

In other words, we often have a chain of ATMOST constraints, defined as follows:

Definition 3. ATMOST(u, [x1, . . . , xq], v)⇔ AMONG(0, u, [x1, . . . , xq], v)

Definition 4. ATMOSTSEQ(u, q, [x1, . . . , xn], v)⇔
∧n−q

i=0 ATMOST(u, [xi+1, . . . , xi+q], v)

However, it is easy to maintain AC on this constraint. Indeed, the ATMOST con-
straint is monotone, i.e., the set of supports for value 0 is a super-set of the set of sup-
ports for value 1. Hence a ATMOSTSEQ constraint is AC iff each ATMOST is AC [4].

A good tradeoff between filtering power and complexity can be achieved by rea-
soning about the total number of occurrences of values from the set v together with the
chain of ATMOST constraints.1 We therefore introduce the ATMOSTSEQCARD con-
straint, defined as the conjunction of an ATMOSTSEQ with a cardinality constraint on
the total number of occurrences of values in v:

Definition 5. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔
ATMOSTSEQ(u, q, [x1, . . . , xn], v) ∧ |{i | xi ∈ v}| = d

The two AC algorithms introduced in [19] were adapted in [18] to achieve AC
on the ATMOSTSEQCARD constraint. First, in the same way that AMONGSEQ can
be encoded with a REGULAR constraint, ATMOSTSEQCARD can be encoded with a
COST-REGULAR constraint, where the cost stands for the overall demand, and it is
increased on transitions labeled with the value 1. This procedure has the same worst
case time complexity, i.e., O(2qn). Second, the more general version of the polyno-
mial algorithm (GEN-SEQUENCE) is used, to filter the following decomposition of the
ATMOSTSEQCARD constraint into a conjunction of AMONG:

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔
n−q∧
i=0

AMONG(0, u, [xi+1, . . . , xi+q], v) ∧ AMONG(d, d, [x1, . . . , xn], v)

1 This modeling choice is used in [18] on car-sequencing.



Since the number of AMONG constraints is linear, the algorithm of van Hoeve et al.
runs in O(n3) on this decomposition. Similarly, the algorithm of Maher et al. runs in
O(n2) on ATMOSTSEQCARD, which is the best known complexity for this problem.

Global Sequencing Constraint: Finally, in the particular case of car-sequencing, not
only we have an overall cardinality for the values in v, but each value corresponds to
a class of car and has a required number of occurrences. Therefore, Puget and Régin
proposed to consider the conjunction of a AMONGSEQ and a GCC constraint. Let cl and
cu be two mapping on integers such that cl(j) ≤ cu(j) ∀j, and let D =

⋃n
i=1D(xi).

The Global Cardinality Constraint (GCC) is defined as follows:

Definition 6. GCC(cl, cu, [x1, . . . , xn])⇔
∧

j∈D cl(j) ≤ |{i | xi = j}| ≤ cu(j)

The Global Sequencing Constraint is defined as follows:

Definition 7. GSC(l, u, q, cl, cu, [x1, . . . , xn], v)⇔

AMONGSEQ(l, u, q, [x1, .., xn], v) ∧ GCC(cl, cu, [x1, .., xn])

The mappings cl and cu are defined so that for a value v, both cl(v) and cu(v) map
to the number of occurrences of the corresponding class of car. A reformulation of this
constraint into a set of GCC constraints was introduced in [15]. However, achieving AC
on this constraint is NP-hard [3]. In fact, so is achieving bounds consistency.2

3 The ATMOSTSEQCARD Constraint

In this section we introduce a linear filtering algorithm for the ATMOSTSEQCARD
constraint. We first give a simple greedy algorithm for finding a support with a O(nq)
time complexity. Then, we show that one can use two calls to this procedure to enforce
AC. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [18] and [10] that we can consider Boolean variables and v =
{1}, since the following decomposition of AMONG (or ATMOST) does not hinder prop-
agation as it is Berge-acyclic [6]:

AMONG(l, u, [x1, . . . , xq], v)⇔
q∧

i=1

(xi ∈ v ↔ x′i = 1) ∧ l ≤
q∑

i=1

x′i ≤ u

Therefore, throughout the paper, we shall consider the following restriction of the
ATMOSTSEQCARD constraint, defined on Boolean variables, and with v = {1}:

Definition 8.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u) ∧ (

n∑
i=1

xi = d)

2 Comics note, Nina Narodytska.



3.1 Finding a Support

Let w be an n-tuple in {0, 1}n, w[i] denotes the ith element of w, |w| =
∑n

i=1 w[i]
its cardinality, and w[i : j] the (|j − i| + 1)-tuple equal to w on the sub-sequence
[xi, . . . , xj ].

We first show that one can find a support by greedily assigning variables in a lex-
icographical order to the value 1 whenever possible, that is, while taking care of not
violating the ATMOSTSEQ constraint. More precisely, doing so leads to an assignment
of maximal cardinality, which may easily be transformed into an assignment of cardi-
nality d. This greedy rule, computing an assignment w maximizing the cardinality of
the sequence (x1, . . . , xn) subject to a ATMOSTSEQ constraint (with parameters u and
q), is shown in Algorithm 1.

First, the tuple w is initialized to the minimum value in the domain of each variable
in Line 1. Then, at each step i ∈ [1, . . . , n] of the main loop, c(j) is the cardinality of the
jth subsequence involving the variable xi, i.e. at step i, c(j) =

∑min(n,i+j−1)
l=max(1,i−q+j) w[l].

According to the greedy rule sketched above, we set w[i] to 1 iff it is not yet assigned
(D(xi) = {0, 1}) and if this does not violate the capacity constraints, that is, there is
no subsequence involving xi of cardinality u or more. This is done by checking the
maximum value of c(j) for j ∈ [1, . . . , q] (Condition 2). In that case, the cardinality of
every subsequence involving xi is incremented (Line 3). Finally when moving to the
next variable, the values of c(j) are shifted (Line 4), and the value of c(q) is obtained
by adding the value of w[i + q] and subtracting w[i] to its previous value (Line 5).
From now on, we shall denote−→w the assignment found by leftmost on the sequence
x1, . . . , xn. Moreover, we shall denote←−w the assignment found by the same algorithm,
however on the sequence xn, . . . , x1, that is, right to left. Notice that, in order to sim-
plify the notations,←−w [i] shall denote the value assigned by leftmost to the variable
xi, and not xn−i+1 as it would really be if we gave the reversed sequence as input.

Lemma 1. leftmostmaximizes
∑n

i=1 xi subject to ATMOSTSEQ(u, q, [x1, . . . , xn]).

Proof. Let −→w be the assignment found by leftmost, and suppose that there exists w
another assignment (consistent for ATMOSTSEQ(u, q, [x1, . . . , xn])) such that |w| >
|−→w |. Let i be the smallest index such that −→w [i] 6= w[i]. By definition of −→w , we know
that −→w [i] = 1 hence w[i] = 0. Now let j be the smallest index such that −→w [j] < w[j]
(it must exists since |w| > |−→w |).

We first argue that the assignment w′ equal to w except that w′[i] = 1 and w′[j] = 0
(as in −→w ) is consistent for ATMOSTSEQ. Clearly, its cardinality is not affected by this
swap, hence |w′| = |w|. Now, we consider all the sum constraints whose scopes are
changed by this swap, that is, the sums

∑a+q−1
l=a w′[l] on intervals [a, a + q − 1] such

that a ≤ i < a+ q or a ≤ j < a+ q. There are three cases:

1. Suppose first that a ≤ i < j < a+ q: in this case, the value of the sum is the same
in w and w′, therefore it is lower than or equal to u.

2. Suppose now that i < a ≤ j < a+q: in this case, the value of the sum is decreased
by 1 from w to w′, therefore it is lower than or equal to u.

3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q − 1], we
have w′[l] ≤ −→w [l] since j is the smallest integer such that −→w [j] < w[j], hence the
sum is lower than or equal to u.



Algorithm 1: leftmost
count← 0;

1 foreach i ∈ [1, . . . , n] do w[i]← min(xi);
;
foreach i ∈ [1, . . . , q] do w[n + i]← 0;
;
c(1)← w[1];
foreach j ∈ [2, . . . , q] do c(j)← c(j − 1) + w[j];
;
foreach i ∈ [1, . . . , n] do

2 if |D(xi)| > 1 & maxj∈[1,q](c(j)) < u then
w[i]← 1;
count← count + 1;

3 foreach j ∈ [1, . . . , q] do c(j)← c(j) + 1;
;

4 foreach j ∈ [2, . . . , q] do c(j − 1)← c(j);
;

5 c(q)← c(q − 1) + w[i + q]− w[i];

return w;

xi w
c

max1 2 3 4
. 1 0 0 0 1 1
0 0 1 1 2 1 2
. 0 1 2 1 1 2
1 1 2 1 1 1 2
. 1 1 1 1 0 1
. 0 2 2 1 0 2
. 0 2 1 0 0 2
0 0 1 0 0 1 1
. 1 0 0 1 1 1
0 0 0 2 2 1 2
1 1 2 2 1 2 2
. 0 2 1 2 1 2
. 0 1 2 1 1 2
1 1 2 1 1 1 2
. 1 1 1 1 0 1
. 0 2 2 1 0 2

Fig. 1: An algorithm to compute an assignment satisfying ATMOSTSEQ(2, 4, [x1, . . . , xn]) with
maximal cardinality (left), and an example of its execution (right). Dots in the first column stand
for unassigned variables. The second column shows the computed assignment w, and the next
columns show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration. The
last column stands for the maximum value among c(1), c(2), c(3) and c(4).

Therefore, given a sequence w of maximum cardinality and that differs with −→w at
rank i, we can build one of equal cardinality and that does not differs from−→w until rank
i + 1. By iteratively applying this argument, we can obtain a sequence identical to −→w ,
albeit with cardinality |w|, therefore contradicting our hypothesis that |w| > |−→w |. ut

Corollary 1. Let−→w be the assignment returned by leftmost. There exists a solution
of ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) iff the three following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable
(2)

∑n
i=1min(xi) ≤ d

(3) |−→w | ≥ d.

Proof. It is easy to see that these conditions are all necessary: (1) and (2) come from
the definition, and (3) is a direct application of Lemma 1. Now we prove that they
are sufficient by showing that if these properties hold, then a solution exists. Since
ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable,−→w does not violate the chain of ATMOST
constraints as the value 1 is assigned to xi only if all subsequences involving xi have
cardinality u− 1 or less. Moreover, since

∑n
i=1min(xi) ≤ d there are at least |−→w | − d

variables such that min(xi) = 0 and −→w [i] = 1. Assigning them to 0 does not violate
the ATMOSTSEQ constraint, hence there exists a support. ut

Lemma 1 and Corollary 1 give us a polynomial support-seeking procedure for
ATMOSTSEQCARD. Indeed, the worst case time complexity of Algorithm 1 is inO(nq).
There are n steps and on each step, Lines 2, 3 and 4 involveO(q) operations. Therefore,
for each variable xi, a support for xi = 0 or xi = 1 can be found in O(nq).

Consequently we have a naive AC procedure running in O(n2q) time.



3.2 Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to
the ATMOSTSEQCARD constraint within the same time complexity as Algorithm 1.

First, we show that there can be inconsistent values only in the case where the
cardinality |−→w | of the assignment returned by leftmost is exactly d: in any other
case, the constraint is either violated (when |−→w | < d) or AC, (when |−→w | > d). The
following proposition formalises this:

Proposition 1. The constraint ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) is AC if the
three following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC

(2)
∑n

i=1min(xi) ≤ d
(3) |−→w | > d

Proof. By Corollary 1 we know that ATMOSTSEQCARD(u, q, d + 1, [x1, . . . , xn]) is
satisfiable. Let w be a satisfying assignment, and consider without loss of generality a
variable xi such that |D(xi)| > 1. Assume first that w[i] = 1. The solution w′ equal
to w except that w′[i] = 0 satisfies ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]). Indeed,
|w′| = |w| − 1 = d and since ATMOSTSEQ(u, q, [x1, . . . , xn]) was satisfied by w it
must be satisfied by w′. Hence, for every variable xi s.t. |D(xi)| > 1, there exists a
support for xi = 0.

Suppose that w[i] = 0, and let a < i (resp. b > i) be the largest (resp. smallest)
index such that w[a] = 1 and D(xa) = {0, 1} (resp. w[b] = 1 and D(xb) = {0, 1}).
Let w′ be the assignment such that w′[i] = 1, w′[a] = 0, w′[b] = 0, and w = w′ other-
wise. We have |w′| = d, and we show that it satisfies ATMOSTSEQ(u, q, [x1, . . . , xn]).
Consider a subsequence xj , . . . , xj+q−1. If j + q ≤ i or j > i then

∑j+q−1
l=j w′[l] ≤∑j+q−1

l=j w[l] ≤ u, so only indices j s.t. j ≤ i < j + q matter. There are two cases:

1. Either a or b or both are in the sub-sequence (j ≤ a < j + q or j ≤ b < j + q). In
that case

∑i+q−1
l=j w′[l] ≤

∑i+q−1
l=j w[l].

2. Neither a nor b are in the sub-sequence (a < j and j + q ≤ b). In that case, since
D(xi) = {0, 1} and since condition (1) holds, we know that

∑i+q−1
l=j min(xl) < u.

Moreover, since a < j and j + q ≤ b, there is no variable xl in that sub-sequence
such that w[l] = 1 and 0 ∈ D(xl). Therefore, we have

∑i+q−1
l=j w[l] < u, hence∑i+q−1

l=j w′[l] ≤ u.

In both cases w satisfies all capacity constraints. ut
Remember that achieving AC on ATMOSTSEQ is trivial since AMONG is monotone.

Therefore we focus of the case where ATMOSTSEQ is AC, and |−→w | = d. In particular,
Propositions 2, 3, 4 and 5 only apply in that case. The equality |−→w | = d is therefore
implicitly assumed in all of them.

Proposition 2. If |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| < d then xi = 0 is not AC.

Proof. Suppose that we have |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| < d and suppose that there
exists an assignment w such that w[i] = 0 and |w| = d.



= ≥
−→w 1

−→wL
0 ←−w d−L

xixj xj+q−1

L d− L

Fig. 2: Illustration of Proposition 4’s proof. Horizontal arrows represent assignments.

By Lemma 1 on the sequence x1, . . . , xi−1 we know that
∑i−1

l=1 w[l] ≤ |−→w [1 : i− 1]|.
By Lemma 1 on the sequence xn, . . . , xi+1 we know that

∑n
l=i+1 w[l] ≤ |←−w [i+ 1 : n]|.

Therefore, since w[i] = 0, we have |w| =
∑n

l=1 w[l] < d, thus contradicting the
hypothesis that |w| = d. Hence, there is no support for xi = 0. ut

Proposition 3. If |−→w [1 : i]|+ |←−w [i : n]| ≤ d then xi = 1 is not AC.

Proof. Suppose that we have |−→w [1 : i]| + |←−w [i : n]| ≤ d and suppose that there exists
an assignment w′ such that w′[i] = 1 and |w′| = d.

By Lemma 1 on the sequence x1, . . . , xi we know that
∑i

l=1 w
′[l] ≤ |−→w [1 : i]|.

By Lemma 1 on the sequence xn, . . . , xi we know that
∑n

l=i w
′[l] ≤ |←−w [i : n]|.

Therefore, since w′[i] = 1, we have |w′| =
∑i

l=1 w
′[l] +

∑n
l=i w

′[l]− 1 < d, thus
contradicting the hypothesis that |w′| = d. Hence there is no support for xi = 1. ut

Propositions 2 and 3 entail a pruning rule. In a first pass, from left to right, one can
use an algorithm similar to leftmost to compute and store the values of |−→w [1 : i]|
for all i ∈ [1, . . . , n]. In a second pass, the values of |←−w [i : n]| for all i ∈ [1, . . . , n]
are similarly computed by simply running the same procedure on the same sequence
of variables, however reversed, i.e., from right to left. Using these values, one can then
apply Proposition 2 and Proposition 3 to filter out the value 0 and 1, respectively. We
detail this procedure in the next section.

We first show that these two rules are complete, that is, if ATMOSTSEQ is AC,
and the overall cardinality constraint is AC then an assignment xi = 0 (resp. xi = 1) is
inconsistent iff Proposition 2 (resp. Proposition 3) applies. The following Lemma shows
that the greedy rule maximises the density of 1s on any subsequence starting on x1, and
therefore minimises it on any subsequence finishing on xn. Let leftmost(k) denote
the algorithm corresponding to applying leftmost, however stopping whenever the
cardinality of the assignment reaches a given value k.

Lemma 2. Let w be a satisfying assignment of ATMOSTSEQ(u, q, [x1, . . . , xn]). If
k ≤ |w| then the assignment −→w k computed by leftmost(k) is such that, for any
1 ≤ i ≤ n:

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l].

Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases.
If i > m, for any value l in [m + 1, . . . , n], −→w k[l] ≤ w[l] (since −→w k[l] = min(xl)),
hence

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l]. When i ≤ m, clearly for i = 1,

∑n
l=i
−→w k[l] ≤∑n

l=i w[l] since |−→w k| ≤ |w|. Now consider the case of i 6= 1. Since |−→w k| ≤ |w|, then∑n
l=i
−→w k[l] ≤ |w| −

∑i−1
l=1
−→w k[l]. Thus,

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l] + (

∑i−1
l=1 w[l] −



=

=

≥
−→w 1 0 0. . . 0

−→wL−1
0 0 0. . . 1 ←−w d−L

0 0. . . 0

←−w d−L+1
0 0 0. . . 1

xixa

xb

L− 1 d− L + 1

Fig. 3: Illustration of Proposition 5’s proof. Horizontal arrows represent assignments.

∑i−1
l=1
−→w k[l]). Moreover, by applying Lemma 1, we show that

∑i−1
l=1
−→w k[l] is maxi-

mum, hence larger than or equal to
∑i−1

l=1 w[l]. Therefore,
∑n

l=i
−→w k[l] ≤

∑n
l=i w[l].

ut

Proposition 4. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, and |−→w [1 : i− 1]|+|←−w [i+ 1 : n]| ≥
d then xi = 0 has a support.

Proof. Let −→w be the assignment found by leftmost. We consider, without loss of
generality, a variable xi such thatD(xi) = {0, 1} and |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| ≥
d and show that one can build a support for xi = 0. If −→w [i] = 0 or ←−w [i] = 0 then
there exists a support for xi = 0, hence we only need to consider the case where
−→w [i] =←−w [i] = 1.

LetL = |−→w [1 : i− 1]|, and let←−w d−L be the result of leftmost(d−L) on the sub-
sequence xn, . . . , xi. We will show that w, defined as the concatenation of−→w [1 : i− 1]
and←−w d−L[i : n] is a support for xi = 0.

First, we show thatw[i] = 0, that is←−w d−L[i] = 0. By hypothesis, since |−→w [1 : i− 1]|+
|←−w [i+ 1 : n]| ≥ d, we have |←−w [i+ 1 : n]| ≥ d − L. Now consider the sequence
xi, . . . , xn, and let w′ be the assignment such that w′[i] = 0, and w′ = ←−w [i+ 1 : n]
otherwise. Since |w′| = |←−w [i+ 1 : n]| ≥ d − L, by Lemma 2, we know that w′

has a higher cardinality than ←−w d−L on any subsequence starting in i, hence w[i] =
←−w d−L[i] = w′[i] = 0.

Now we show that w does not violate the ATMOSTSEQ constraint. Obviously, since
it is the concatenation of two consistent assignments, it can violate the constraint only
on the junction, i.e., on a sub-sequence xj , . . . , xj+q−1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing
with −→w , as illustrated in Figure 2. We have

∑j+q−1
l=j

−→w [l] ≤ u, and
∑i−1

l=j
−→w [l] =∑i−1

l=j w[l]. Moreover, by Lemma 2, since |−→w [i : n]| = |←−w d−L| = d − L we have∑j+q−1
l=i

←−w d−L[l] ≤
∑j+q−1

l=i
−→w [l] hence

∑j+q−1
l=i w[l] ≤

∑j+q−1
l=i

−→w [l]. Therefore,
we can conclude that

∑j+q−1
l=j w[l] ≤ u. ut

Proposition 5. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, |w[1 : i]| + |w[n : i]| > d
then xi = 1 has a support.

Proof. Let−→w and←−w be the assignments found by leftmost, on respectively x1, . . . , xn
and xn, . . . , x1. We consider, without loss of generality, a variable xi such thatD(xi) =
{0, 1} and |−→w [1 : i]|+ |←−w [i : n]| > d and show that one can build a support for xi = 1.



If −→w [i] = 1 or←−w [i] = 1 then there exists a support for xi = 1, hence we only need to
consider the case where −→w [i] =←−w [i] = 0.

Let L = |−→w [1 : i]| = |−→w [1 : i− 1]| (this equality holds since −→w [i] = 0). Let
−→wL−1 be the assignment obtained by using leftmost(L − 1) on the subsequence
x1, . . . , xi−1, and let←−w d−L be the assignment returned by leftmost(d − L) on the
subsequence xn, . . . , xi+1.

We show that w such that w[i] = 1, equal to −→wL−1 on x1, . . . , xi−1 and to←−w d−L
on xi+1, . . . , xn, is a support.

Clearly |w| = d, therefore we only have to make sure that all capacity constraints
are satisfied. Moreover, since it is the concatenation of two consistent assignments, it
can violate the constraint only on the junction, i.e., on a sub-sequence xj , . . . , xj+q−1
such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing
with −→w and←−w d−L (see Figure 3). First, observe that on the subsequence x1, . . . , xi−1,
−→wL−1 = −→w , except for the largest index a such that −→w [a] = 1 and w[a] = 0. Simi-
larly on xn, . . . , xi+1, we have←−w d−L = ←−w d−L+1, except for the smallest b such that
←−w d−L+1[b] = 1. There are two cases:

Suppose first that j > a. In that case,
∑j+q−1

l=j w[l] =
∑j+q−1

l=i
←−w d−L+1[l] if j +

q − 1 ≥ b, and otherwise it is equal to 1. It is therefore alway less than or equal to u
since i ≥ j (and we assume u ≥ 1).

Now suppose that j ≤ a. In that case, consider first the subsequence xj , . . . , xi.
On this interval, the cardinality of w is the same as that of −→w , i.e.,

∑i
l=j w[l] =∑i−1

l=j
−→wL−1[l] + 1 =

∑i
l=j
−→w [l]. On the subsequence xi+1, . . . , xj+q−1, observe that

|w[i+ 1 : n]| = |−→w [i+ 1 : n]| = d− L, hence by Lemma 2, we have
∑j+q−1

l=i+1 w[l] =∑j+q−1
l=i+1

←−w d−L[l] ≤
∑j+q−1

l=i+1
−→w [l]. Therefore

∑j+q−1
l=j w[l] ≤

∑j+q−1
l=j

−→w [l] ≤ u. ut

3.3 Algorithmic Complexity

Using Propositions 2, 3, 4 and 5 one can design a filtering algorithm with the same
worst case time complexity as leftmost. In this section, we introduce a linear time
implementation of leftmost, denoted leftmost count, that returns the values of
−→w [1 : i] for all values of i (Algorithm 2).

It is easy to see that leftmost count has a O(n) worst case time complex-
ity. In order to prove its correctness, we will show that the assignment computed by
leftmost count is the same as that computed by leftmost.

Proof (sketch). We only sketch the proof here. The following three invariants are true
at the beginning of each step i of the main loop:

– The cardinality of the sub-sequence j is given by c[(i+j−2) mod q]+count[i−1].
– The number of sub-sequences of cardinality k is given by occ[n−count[i−1]+k].
– The cardinality maximum of any sub-sequence is given by max c.

1st invariant: The value of c[j] is updated in two ways in leftmost. First, at
each step of the loop the values in c[1] through to c[q] are shifted to the left. Therefore,
there is only one really new value. By using the modulo operation, we can update only



Algorithm 2: leftmost count
Data: u, q, [x1, . . . , xn]
Result: count : [0, . . . , n] 7→ [0, . . . , n]
foreach i ∈ [1, . . . , n] do

w[i]← min(xi);
occ[i] = 0;

foreach i ∈ [0, . . . , n] do count[i]← 0;
;
c[0]← w[1];
foreach i ∈ [1, . . . , u] do occ[n + i] = 0;
;
foreach i ∈ [1, . . . , q] do

w[n + i]← 0;
if i < q then c[i]← c[i− 1] + w[i + 1];
occ[n + c[i− 1]]← occ[n + c[i− 1]] + 1;

max c← max({c[i] | i ∈ [0, . . . , q − 1]});
foreach i ∈ [1, . . . , n] do

1 if max c < u & |D(xi)| > 1 then
max c← max c + 1;
count[i]← count[i− 1] + 1;
w[i]← 1;

else count[i]← count[i− 1];
;
prev ← c[(i− 1) mod q];
next← c[(i + q − 2) mod q] + w[i + q]− w[i];
c[(i− 1) mod q]← next;
if prev 6= next then occ[n + next]← occ[n + next] + 1;
if next + count[i] > max c then max c← max c + 1;
;
occ[n + prev]← occ[n + prev]− 1;
if occ[n + prev] = 0 & prev + count[i] = max c then

max c← max c− 1;

;

return count;
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Fig. 4: Example of the execution of Algorithm 3 for u = 4, q = 8, d = 12. The first line stands
for current domains, dots are unassigned variables (hence ub = 10). The two next lines give
the assignments −→w and←−w obtained by running leftmost count from left to right and from
right to left, respectively. The third and fourth lines stand for the values of L[i] = |−→w [1 : i]| and
R[n− i+1] = |←−w [i : n]|. The fifth and sixth lines correspond to the application of, respectively,
Proposition 2 and 3. Last, the seventh line give the arc consistent closure of the domains.

one of these values. Second, when w[i] takes the value 1, we increment c[1] up to c[q].
Since this happened exactly count[i− 1] times at the start of step i, we can simply add
count[i− 1] to obtain the same value as in leftmost.

2nd invariant: The data structure occ is a table, storing at index n+k the number of
subsequences involving xi with cardinality k for the current assignment w. Therefore,
by decrementing the pointer to the first element of the table we in effect shift the entire
table. Here again the value of count[i− 1], or rather the expression (n− count[i− 1])
points exactly to the required starting point of the table.

3rd invariant: The maximum (or minimum) cardinality (of subsequences involving
xi) can change by a unit at the most from one step to the next. Therefore, when the
variable max c needs to change, it can only be incremented (when occ[n − count[i −



1] +max c+ 1] goes from the value 0 to 1) or decremented (when occ[n− count[i−
1] +max c] goes from the value 1 to 0). ut

Algorithm 3: AC(ATMOSTSEQCARD)
Data: [x1, . . . , xn], u, q, d
Result: AC on ATMOSTSEQCARD(u, q, d, [x1, .., xn])
AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]);
ub← d−

∑n
i=1 min(xi);

L← leftmost count([x1, . . . , xn], u, q, d);
if L[n] = ub then

R← leftmost count([xn, . . . , x1], u, q, d);
foreach i ∈ [1, . . . , n] such thatD(xi) = {0, 1} do

if L[i] + R[n− i + 1] ≤ ub thenD(xi)← {0};
;
if L[i− 1] + R[n− i] < ub thenD(xi)← {1};
;

else if L[n] < ub then Fail;

Algorithm 3 computes the AC closure of a constraint ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]).
In the first line, the AC closure of ATMOSTSEQ(u, q, [x1, . . . , xn]) is computed. It en-
sures that the filtering rules introduced in this paper hold. For lack of space, we do not
give a pseudo-code for achieving AC on ATMOSTSEQ. However, it can be done in lin-
ear time using a procedure similar to leftmost count. We want to compute, for the
assignment corresponding to the lower bound of each domain, if an unassigned vari-
able is covered by a subsequence of cardinality u for the lower bounds of the domains.
We do it using a truncated version of leftmost count: the values of w[i] are never
updated, i.e., they are set to the minimum value in the domain and we never enter the
if-then-else block starting at condition 1 in Algorithm 2. Moreover, we store the value
of max c for each value of i in a table that we can subsequently use to achieve AC on
ATMOSTSEQ, by going through it and assigning 0 to any unassigned variable covered
by at least one subsequence of cardinality u.

The remainder is a straight application of Propositions 2, 3, 4 and 5. We give an
example of its execution in Figure 4. The worst case time complexity of Algorithm 3 is
therefore O(n), hence optimal.

4 Experimental Results

We tested our filtering algorithm on two benchmarks: car-sequencing and crew-rostering.
All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For each instance, we
launched 5 randomized runs with a 20 minutes time cutoff.3 All models are imple-
mented using Ilog-Solver.

Since we compare propagators, we averaged the results across several branching
heuristics to reduce the bias that these can have on the outcome. For each considered
data set, we report the total number of successful runs (#sol). Then, we report the CPU

3 For a total of approximately 200 days of CPU time.



time (time) in seconds and number of backtracks (avg bts) both averaged over all suc-
cessful runs, instances and branching heuristics. Moreover, we report the maximum
number of backtracks (max bts) in the same scope. We emphasize the statistics of the
best method (w.r.t. #sol) for each data set using bold face fonts.

4.1 Car-sequencing

In the car-sequencing problem [8, 17], n vehicles have to be produced on an assembly
line, subject to capacity and demand constraints.

We use a standard model, implemented in Ilog-Solver. We have n integer variables
standing for the class of vehicles in each slot of the assembly line and nm boolean vari-
ables yji standing for whether the vehicle in the ith slot requires option j. The demand
for each class is enforced with a GCC [14]. We compare four models for the capac-
ity constraints coupled with the demand on each option (derived from the demand on
classes). In the first model (sum) a simple decomposition into a chain of sum constraints
plus an extra sum for the demand is used. In the second (gsc), we use one GSC con-
straint per option. In the third, (amsc), we use the AC procedure introduced in this paper
for the ATMOSTSEQCARD constraint. Finally, in the fourth (amsc+gsc) we combine
the GSC constraint with our filtering algorithm.

We use 34 different heuristics, obtained by combining different ways of exploring
the assembly line either in lexicographic order or from the middle to the sides); of
branching on affectation of a class to a slot or of an option to a slot; of selecting the
best class or option among a number of natural criteria (such as maximum demand,
minimum u/q ratio, as well as other criteria described in or derived from [5, 16]).

We use benchmarks available in the CSPLib [9] divided into four sets of respectively
70, 4, 5 and 7 instances ranging from 100 to 400 cars. Instances of the third set are all
unsatisfiable all other are satisfiable.

The results are given in Table 1. In all cases, the best number of solved problems
is obtained either by amsc+gsc (for small or unsatisfiable instances), or by amsc alone
(for larger instances of set2 and set4). Overall, we observe that the GSC constraint
allows to prune much more values than ATMOSTSEQCARD. However, it slows down
the search by a substantial amount (we observed a factor 12.5 on the number of nodes
explored per second). Moreover, the amounts of filtering obtained by these two methods
are incomparable. Therefore combining them is always better than using GSC alone.

In [18] the authors applied their method to set1, set2 and set3 only. For their exper-
iments, they considered the best result provided by 2 heuristics (σ and min domain).
When using COST-REGULAR or GEN-SEQUENCE filtering alone, 50.7% of problems
are solved and when combining either COST-REGULAR or GEN-SEQUENCE with GSC,
65.2% of problems are solved (with a time out of 1 hour). In our experiments, in average
over the 34 heuristics and the 5 re-starts, ATMOSTSEQCARD and GSC solve respec-
tively 82.5% and 86.11% of instances and combining ATMOSTSEQCARD with GSC
solves 86.36% instances in a time out of 20 minutes.



Table 1: Evaluation of the filtering methods (averaged over all heuristics)

Method set1 (70× 34× 5) set2 (4× 34× 5) set3 (5× 34× 5) set4 (7× 34× 5)
#sol avg bts time #sol avg bts time #sol avg bts time #sol avg bts time

sum 8480 231.2K 13.93 95 1.4M 76.60 0 - > 1200 64 543.3K 43.81
gsc 11218 1.7K 3.60 325 131.7K 110.99 31 55.3K 276.06 140 25.2K 56.61

amsc 10702 39.1K 4.43 360 690.8K 72.00 16 40.3K 8.62 153 201.4K 33.56
amsc+gsc 11243 1.2K 3.43 339 118.4K 106.53 32 57.7K 285.43 147 23.8K 66.45

4.2 Crew-rostering

In this problem, working shifts have to be attributed to employees over a period, so that
the required service is met at any time and working regulations are respected. The latter
condition can entail a wide variety of constraints. Previous works [11] [13] used allowed
(or forbidden) patterns to express successive shift constraints. For example, with 3 shifts
of 8 hours per day: D (day), E (evening) and N (night), ND can be forbidden since
employees need some rest after night shifts. In this paper we consider a simple case
involving 20 employees with 3 shifts of 8 hours per days where no employee can work
more than one 8h shift per day, no more than 5 days a week, and the break between
two worked shifts must be at least 16h. The planning horizon is of 28 days, and each
employee must work 34 hours per week in average (17 shifts over the 4 weeks period).

Table 2: Evaluation of the filtering methods (averaged over all heuristics)

Benchmarks underconstrained (5× 2× 126) hard (5× 2× 111) overconstrained (5× 2× 44)
#sol avg bts max bts time #sol avg bts max bts time #sol avg bts max bts time

sum 1229 110.5K 10.1M 12.72 574 370.7K 13.4M 38.45 272 52.1K 5.7M 5.56
gsc 1210 6.2K 297.2K 29.19 579 23.5K 433.5K 77.78 276 7.7K 378.9 24.14

amsc 1237 34.2K 7.5M 5.82 670 213.4K 7.5M 31.01 284 51.3K 7.5M 6.22

We use a model with one Boolean variable eij for each of them employees and each
of the n shifts stating if employee i works on shift j. The demand dsj on each shift j is
enforced through a sum constraint

∑m
i=1 eij = dsj .The other constraints are stated using

two ATMOSTSEQCARD constraints per employee, one with ratio u/q = 1/3, another
with ratio 5/21, and both with the same demand d = 17 corresponding to 34 hours of
work per week. We compare three models. In the first (sum), we use a decomposition
in a chain of sum constraints. In the second (gsc), we use the GSC constraint to encode
it. Observe that in this case, since the domains are Boolean, the GCC within the GSC
constraint is in fact nothing more than a sum. Therefore, it cannot prune more than
ATMOSTSEQCARD (however it is stronger than the simple sum decomposition). In the
third model (amsc) we use the algorithm presented in this paper.

281 instances were generated, with employee unavailability ranging from from 18%
to 46% by increment of 0.1. We partition the instances into three sets, with in the first
126 instances with lowest unavailability (all satisfiable), in the third, the 44 instances
with highest unavailability (mostly unsatisfiable), and the rest in the second group.



We used two branching heuristic. In the first we chose the employee with minimum
slack, and assign it to its possible shift of maximum demand. In the second we use the
same criteria, but select the shift first and then the employee.

We report the results in Table 2. The AC algorithm achieves more filtering than the
sum decomposition and the GSC decomposition. However, depending on the heuristic
choices and the random seed, the size of the search tree is not always smaller. We
observe that our propagator is only marginally slower in terms of nodes explored per
second than the sum decomposition and much faster (by a factor 20.4 overall) than GSC.
It is able to solve 15.7% and 16.7% more problems within the 20 minutes cutoff in the
“hard” set than the GSC and sum decompositions, respectively.

5 Conclusion

We introduced a linear algorithm for achieving arc consistency on the ATMOSTSEQCARD
constraint. Previously, the best AC algorithm had a O(n2) time complexity [10]. How-
ever, it ran in O(n2 log n) time down a branch since subsequents calls cost O(n log n),
whilst our algorithm is not incremental hence requires up toO(n2) steps down a branch.

The empirical evaluation on car-sequencing and crew-rostering benchmarks shows
that this propagator is useful on these applications.
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