
New Models for Two Variants of Popular Matching
Danuta Sorina Chisca, Mohamed Siala, and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science,
University College Cork, Ireland

{sorina.chisca|mohamed.siala|barry.osullivan}@insight-centre.org

Gilles Simonin
TASC - Institut Mines Telecom Atlantique

LS2N UMR 6004
4 rue Alfred Kastler, 44307 Nantes, France

gilles.simonin@imt-atlantique.fr

Abstract—We study the problem of matching a set of applicants
to a set of posts, where each applicant has an ordinal preference
list, which may contain ties, ranking a subset of posts. A matching
M is popular if there exists no matching M ′ where more
applicants prefer M ′ to M . Several notions of optimality are
studied in the literature for the case of strictly ordered preference
lists. In this paper we address the case involving ties and propose
novel algorithmic and complexity results for this variant. Next, we
focus on the NP-hard case where additional copies of posts can
be added in the preference lists, called Popular Matching with
Copies. We define new dominance rules for this problem and
present several novel graph properties characterising the posts
that should be copied with priority. We present a comprehensive
set of experiments for the popular matching problem with copies
to evaluate our dominance rules as well as the different branching
strategies. Our experimental study emphasizes the importance of
the dominance rules and characterises the key aspects of a good
branching strategy.

I. INTRODUCTION

Matching under preferences is a large family of prob-
lems occurring in real-world applications, including campus
house allocation, exchanges/markets, and assigning reviewers
to conference papers [1]. Different formulations of these prob-
lems have been proposed, distinguishing between one-sided
matching [2] and two-sided matching, e.g. the stable marriage
problem [3], [4]. The notion of popularity was introduced by
Gardenfors [5] in the full stable marriage problem, where it
is a desirable property in finding a weakly stable matching.

In the popular matching problem, a set of applicants A have
to be matched to a set of posts P whereby each applicant has
an ordinal list of preferences over posts, ranking a subset of
posts in order of preference. Notice that only the applicants
have preferences over posts. Therefore, the popular matching
problem considers only one-sided preferences. If applicants
can be indifferent between posts, we say that preference lists
contain ties. A formal definition of popular matching is given
later in Section II. Informally, a matching M can be seen as a
set containing pairs 〈a, p〉 where a is an applicant and p is a
post and each applicant/post appears at most once in M . Given
two matchings M and M ′, we use the notation M ≺ M ′ if
(strictly) more applicants prefer M ′ to M . A matching M
is popular if and only if there is no matching M ′ such that
M ≺M ′. Consider the following example from [6].

Example 1.1: Let A = {a1, a2, a3}, P = {p1, p2, p3}
and each applicant prefers p1 to p2 and p2 to p3. The
reader can check that this instance does not admit a popular

matching since for any matching M , there exists a matching
M ′ such that M ≺ M ′. For instance, consider the three
(symmetrical) matchings M1 = {(a1, p1), (a2, p2), (a3, p3)},
M2 = {(a1, p3), (a2, p1), (a3, p2)}, and M3 =
{(a1, p2), (a2, p3), (a3, p1)}. We have M1 ≺ M2,M2 ≺ M3,
and M3 ≺M1.

A solution to this situation is to add a copy of a post p1
or p2. This problem is called the Popular Matching with Post
Copies. An example for the popular matching problem is the
training program. A training program can be run for a single
person, but some training programs may be able to accom-
modate more than one person. We wish to fix the capacity of
each training program so as to enable the resulting instance
to admit a popular matching. Another relevant scenario is to
organise bus tours at a conference. People can express their
preference over the tours and it is possible to increase the size
of a bus at a cost.

Related previous work. Abraham et al. in [6] showed that
the standard popular matching problem is polynomial to solve
even if the preference lists contain ties. In particular, they
describe a number of efficient algorithms for finding popular
matchings. Recently, it has been shown that this problem
can be encoded using one Global Cardinality Constraint [7].
Several variants of the popular matching problem exist in the
literature. Let r be the largest preference list size. A popular
matching is fair [8] if it matches the least number of applicants
to their r-th choice and then, subject to this, the least number
to their (r − 1)-th choice, and so on. A matching is rank-
maximal [9] if it matches the maximum number of applicants
to their first choice and then, subject to this, the maximum
number to their second choice, and so on. The authors of [10],
[11] studied the problem of finding a popular matching in a
setting where additional copies of posts can be introduced at
a cost. A variant called popular matching in the capacitated
house allocation problem is described in [12] and its variant
with weights is introduced in [13].

Contributions. In this paper we study two important vari-
ants of the popular matching problem. The first variant is
the optimal popular matching. The notion of optimality is
studied in the literature solely for the case of preference lists
without ties. In this paper we extend to the case involving
ties and propose novel algorithmic and complexity results
for this variant. In particular, we propose an integer linear



programming (ILP) model and a flow model for the optimal
popular matching, where ties are allowed in the preference
list. We show that the optimal popular matching with ties
can be solved in O(n(m + n log(n))) time, where n is the
set of applicants and m is the length of the preference lists.
The second variant deals with instances that does not admit a
popular matching (Example 1.1). We consider the case where
we can add copies of posts in order to find a popular matching.
This problem is known to be NP-Hard [10] and it remains NP-
complete even when preferences are derived from the same
master preference list [14]. Kavitha et al. in [10] show that
this problem remains NP-complete when the preference lists
are of length 2 and ties are allowed only in first position.
However, their properties are not applicable to the general
case. We develop a number of new graph properties that are
used to define new dominance rules for the popular matching
with copies problem. These dominance rules have a significant
impact for the efficiency of the branching strategy. We conduct
the first experimental study for this variant by evaluating the
different search strategies as well as the dominance rules
that we propose. Our experiments show the key aspects of
a good branching strategy and demonstrate the efficiency of
our dominance rules.

The remainder of the paper is organized as follows. In Sec-
tion II we give the formal background and define the notation
used in the paper. In Section III we give our algorithmic results
on optimal popular matching. In Section IV we study popular
matching with copies, presenting novel graph properties and
new dominance rules. Lastly, in Section V we present our
experimental study.

II. POPULAR MATCHING

An instance of the popular matching problem involves an
undirected bipartite graph G = (A∪P,E), where A is called
the set of applicants, P is called the set of posts, and each
applicant ai ranks all posts in {pj | (ai, pj) ∈ E}. We assume
that every applicant ai ∈ A has in its preference list an extra
unique post li, called a last resort. Every last resort li is
assumed to be worse than any post in P . In this way, we can
assume that every applicant is matched, since any unmatched
applicant can be assigned to his unique last resort.

For each matched node u in a matching M , we denote by
M(u) the node linked to u by an edge in M . An applicant ai
prefers a matching M to a matching M ′ if ai is matched in M
and unmatched in M ′, or if ai is matched in both M and M ′

but prefers M(ai) to M ′(ai). A matching M is more popular
than a matching M ′ if there are more applicants preferring M
to M ′. A matching M is popular if there exists no matching
more popular than M . The popular matching problem is the
question of deciding if a popular matching exists, and to find
one if it is the case.

A. Strict Preference Lists

Suppose that the preferences are given in a strict order (i.e.,
without ties). For each applicant ai, we denote by f(ai) the
first-ranked post in its preference list. A post pj ∈P is called

Fig. 1. An instance of popular matching with strict preference lists [6].

an f -post if ∃ai∈A such that f(ai)=pj . Let f(pj) be the set
of applicants ai where f(ai)=pj . Let s(ai) be the best (most
preferred) post for ai that is not an f -post. Such a post is called
an s-post. The least preferred post li guarantees the existence
of s(ai). Figure 1 shows an example with 6 applicants and
6 posts [6]. The bold entries in the preference lists are the
f -posts and the underlined entries are the s-posts.

Theorem 2.1: (From [6]) A matching M is popular if and
only if:

a) Every f -post is matched in M ,
b) For each applicant ai, M(ai) ∈ {f(ai), s(ai)}.

B. Preference List With Ties

We consider the case where preferences can contain ties (see
Figure 2(a) from [6]). The notions of f -posts and s-posts are
defined in the case where ties are present, similar to preference
lists without ties.

The definition of f(ai) becomes the set of top choices for
applicant ai. However the definition of s(ai) is no longer the
same and, in this case, it may contain a number of surplus f -
posts. Let M be a popular matching of some instance graph
G = (A∪P,E). We define the first-rank graph of G as G1 =
(A ∪ P,E1), where E1 is the set of all rank-one edges.

Let M1 be a maximum matching in G1. We recall the
Gallai-Edmonds decomposition [15] in Lemma 2.1 using the
following notation. Using M1, one can partition A ∪ P into
three disjoint sets: E , O, and U . These sets are defined as
follows: E (respectively O) is the set of nodes having an even
(respectively odd) alternating path with respect to M1 from
an unmatched node; and U is the set of nodes that are not in
E ∪ O.

Lemma 2.1 (Gallai-Edmonds decomposition (From [15])):
Let E , O and U be the vertices sets defined by G1 and M1

above. Then:
a) E , O, and U are a partition of A∪P , and any maximum

matching in G1 leads to exactly the same sets E , O, U .
b) Every node in O (resp. U) is matched to a node in E

(resp. U), and |M |= |O|+| U|/2.
c) No maximum matching of G1 contains an edge between

two nodes in O, a node in O and a node in U , or between
a node in E and a node in U .

In [6], s(ai) is defined as the top choice(s) for ai in E ;
see Figures 2(a) where bold entries represent the f -posts
and underlined entries represent the s-posts. In this exam-
ple E = {a1, a2, a3, a4, p3, p5, p6, l1, l2, l3, l4, l5, l6}, O =
{a6, p1, p2}, and U = {a5, p4}.



(a) (b)

Fig. 2. An example with ties in the preference lists and the graph G1 with
a maximum matching in bold.

Theorem 2.2: (From [6]) A matching M is popular iff:
a) M ∩ E1 is a maximum matching of G1,
b) For each applicant ai, M(ai) ∈ f(ai) ∪ s(ai).

III. OPTIMAL POPULAR MATCHING

Several notions of optimality are studied in the literature
for the case of preferences without ties [8], [16]. The most
common way is to associate each edge with a weight. The
purpose then is to find a minimum/maximum weight popular
matching.

The authors of [16] improve the algorithms of Kavitha [8]
for finding a min-cost popular matching in O(n + m) time
and rank-maximal/fair popular matchings in O(n log n + m)
time, where n = |A| and m is the sum of preference lists.

We consider the more general case where preferences can
contain ties. We assume that the weight function is mono-
tonically increasing with respect to the rank. In the case of
maximisation, it is sufficient to consider the opposite of each
weight then solve the new minimisation problem.

To the best of our knowledge, the complexity of finding
an optimal popular matching where ties are allowed in the
preference lists, is unknown. However, recently we found a
technical report in ArXiv [17] showing the result with the
same worst-case time complexity. Our approach is, however,
much simpler.

We shall use a one-one correspondence between the set of
posts and the set of values ∆ = {1, 2, . . . , |P |+n} as follows:
every post pj is associated with the value j and every last
resort post li (related to applicant ai) is associated with the
value |P | + i. The solution of the popular matching problem
is a matching between the set of applicants A and the set of
posts ∆P corresponding to the values in ∆. Let n1 be the
number of applicants, and n2 ≤ n1 be the number of posts in
∆P . We denote by ∆β the set of posts in Op ∪ Up, where β
is the size of this set. Let G′ = (A∪∆P , E′) be the bipartite
graph modelling our problem, where the weight on each edge
(ai, pj) ∈ E′ represents the rank of pj in the preference lists
of ai.

We use the well-known Minimum Weight Perfect Matching
in Bipartite Graph problem. This problem is equivalent to the

∆P

β = |Op ∪ Up|
...

...
...

an1

a2

a1

...

a′1

a′K

1

A

Dummy
C

p1

pβ

pβ+1

pn2

applicants

∆β

Fig. 3. A perfect matching instance.

classic assignment problem with cost, which can be solved
with the following integer linear programming (ILP) model:

min
∑

(ai,pj)∈E′
wjix

j
i (1)

∑
j

xji = 1 ∀i (2)∑
i

xji = 1 ∀j (3)

xji =

{
1 if the edge (ai, pj) is selected,
0 otherwise.

We transform the graph G′ to an instance of the Minimum
Weight Perfect Matching in a Bipartite Graph problem. In
order to obtain a perfect matching, we need to add K=n2−n1
dummy-applicant vertices in A, each of which is linked to all
posts in ∆P \∆β with a weight equal to a large constant C,
e.g. C = |P |2. Note that the weight on the edges between
ai ∈ A and pj ∈ ∆β is equal to 1 (first rank). This linear
transformation is illustrated in Figure 3.

If we compute a Minimum Weight Perfect Matching with
the ILP and find a solution, we will obtain a weight equal
to KC + ε, where ε represents the weights sum from the n1
normal applicants. Since KC is constant, ε is the minimum
weight that we are looking for. Thus, the matching obtained,
without the dummy-applicant vertices, corresponds to a solu-
tion of optimal popular matching problem.

Kuhn [18] gave the first polynomial algorithm, called the
Hungarian method, to solve the Minimum Weight Perfect
Matching in Bipartite Graph problem. The algorithm had a
running time of O(n3). Then, in [19] the authors gave a
reduction of this problem to the flow circulation problem.
As we did with our linear transformation to obtain a perfect
matching instance, we can create a flow circulation instance
in a special network. And from this new model, we can use
better existing complexity results.

Let G = (V,E) be a network, the flow circulation problem



∆PA

t

[1, 1]
[1, 1]

[0, 1]

[β, β]

[n1 − β, n1 − β]

[0, 1]

s
1

∆β

β = |Op ∪ Up|

Fig. 4. Illustration of the flow circulation problem.

is defined as follows:

lb(v, w) lower bound on flow on the edge (v, w),

ub(v, w) upper bound on flow on the edge (v, w),

c(v, w) cost of one flow unit on the edge (v, w),

lb(v, w) ≤ f(v, w) ≤ ub(v, w), (4)

min
∑

(v,w)∈E

c(v, w).f(v, w). (5)

Linear transformation. In order to force the assignment of
the β posts in ∆β , we fix by [1, 1] the lower and upper bounds
of the arcs going out from these posts. We also force the flow
passing by the other posts to not exceed n1 − β, otherwise
all the flow could pass by these arcs and not by the posts in
∆β . An illustration of the construction is presented in Figure
4. In [20], the authors proposed an algorithm to solve the flow
problem in O(n(m+n log n)). Therefore, an optimal popular
matching with ties can be computed in O(n(m + n log n))
time.

IV. POPULAR MATCHING WITH POST COPIES

Many instances of the popular matching problem admit no
solution. In the literature authors have studied such situations
where extra copies of posts are allowed in order to find a
solution [10]. In [10] the authors show that this problem
remains NP-complete even when the preference lists have
length 2 and ties are allowed only in first position. They also
consider the variant where they maintain an upper bound k on
the total number of extra copies for all posts, rather than an
upper bound on the number of copies for each item.

The problem is related to many real-world applications
such as DVD rental stores, training programs, and bus tours.
According to client demand, additional copies of an item can
be purchased in order to satisfy their preferences. A training
program can be run for a single person, but some training
programs may be able to accommodate more than one person.
We wish to fix the capacity of each training program. To
organise bus tours for a given conference, people express
their preference over the tours and it is possible to increase
the size of a bus at a cost.

Reach no

unmatched

vertex

Reach no

unmatched

vertex E

U
ai

p′i

piai C1

U O E
pj

pj E

p′i
U
pi

EE O EOOE

UUU

(a) Non-disjoint alternating paths

Path

Alt. Path

Reach no

unmatched

vertex

Alt. Path
Reach no

unmatched

vertex

Alt.

p′i

C2

C1

C2
ai pi

E O

O E O E
p′i

E
ai

O
pi

(b) Disjoint alternating paths

Fig. 5. Illustrations of the copy of a post in O in G1.

This problem is called the FIXINGCOPIES problem:

Instance: Given an instance of the popular matching prob-
lem associated to the graph G = (A ∪ P,E), and a list
〈c1, . . . , c|P |〉 of upper bounds on the number of copies
possible for each post.

Question: Does there exist an 〈χ1, . . . , χ|P |〉 such that for
each i ∈ {1, . . . , |P |} having χi copies of the i-th post, where
1 ≤ χi ≤ ci, enables the resulting graph to admit a popular
matching?

The FIXINGCOPIES problem is known to be NP-
complete [10], and it remains NP-complete even when prefer-
ences are derived from the same master preference list [14].

A. Properties of the FIXINGCOPIES Problem

We assume that the initial instance I0 does not admit a
popular matching. The bipartite graph associated to I0 is
denoted by G0 = (A ∪ P 0, E0).

FIXINGCOPIES can be divided into two parts: first, deciding
the number of copies for each post; second, solving the
new popular matching instance. We propose to study the
consequences of creating post copies for instances that do not
admit popular matching according to the labels.

1) An Automaton for the Posts: We introduce several
properties of the new instances obtained by copying a post
according to the E ,O, U labelling. In the following, a post will
be said to be in E , O or U if it is labelled by the corresponding
set.

Lemma 4.1: In any instance obtained from the copy of a
post pi in O, the post and its copies will remain in O or be in



Reach no

unmatched

vertex

Reach no

unmatched

vertex

Reach no

unmatched

vertex

p′i

ai pi

O
ai pi

E O E O E

O E E

U U

E
p′i

Fig. 6. Illustration of the copy of a post in U in G1.

U . From this copy, any other post in O will be also in U or
will remain in O, and all posts in E or U will stay the same.
Proof. Let M be the maximum matching used to obtain the
sets E , O and U . We use the M -alternating path notion from
Berge [21]. By definition, if pi is in O then it is linked to
an M -alternating path and matched to an applicant ai in E
(see Figure 5). We recall that all posts in these paths are in O
by definition. Therefore there are two cases: 1) there are only
non-disjoint M -alternating paths linked to pi (see Figure 5(a)),
and 2) at least two disjoint M -alternating paths are connected
to pi (see Figure 5(b)).

In both cases, the copy p′i is also connected to ai and to
at least one M -alternating path. There exists one augment-
ing M -alternating path called C1 from p′i. By changing the
membership in M of all edges of C1, we can increase the
matching. After this modification, there is no other augmenting
M -alternating path and the matching is maximum by Berge’s
Theorem [21]. Since all posts of C1 are in O, no post in E or
U changes from this copy. From this new matching M , we

can recompute the labels.
In the first case, let pj be the closest vertex to pi on

C1 which creates a joint with other M -alternating paths. To
simplify the proof we split C1 in two parts: the one at the left
of pj (containing pi) and the right one. The right part of C1

remains unchanged, but on the left part of C1, every vertex
changes into U (see Figure 5(a)). Thus from this copy, all
posts in O will remain in O or will change into U .

In the second case, there exists at least one distinct M -
alternating path C2 connected to pi and p′i. The concatenation
of C2 and the modified C1 creates a unique M -alternating
path. Therefore, the labels from the modified C1 remain the
same. Thus in both cases, after the copy of a post in O, all
posts in O will remain the same or will be in U , and all posts
in E or U will remain the same. �

Corollary 4.1: In any instance obtained from a copy of a
post in O, the maximum matching is increased by 1.

Lemma 4.2: In any instance obtained from the copy of a
post pi in U , the post and its copies will be in E . From this
copy, any other post in U will be in E or will remain in U .
And all posts in E or O will remain the same.
Proof. Let M be the maximum matching used to obtain the
sets E , O and U . By definition, if pi is in U then it cannot
be linked to an M -alternating path, and it is matched to an
applicant ai who is also in U (see Figure 6). Since the copy p′i
has the same properties than pi, no augmenting M -alternating
path is created from it, and p′i remains unmatched and in E .
Thus the maximum matching remains the same, so all vertices

that are not a member of any M -alternating path from p′i will
keep their label.

All the vertices in U that are a member of an M -alternating
path from this p′i will be in O or E . It is obvious that the
applicant vertices will be in O and the post ones in E . All
vertices not in U that are also a member of this path will
remain the same. Thus after the copy of a post in U , all posts
in U will remain the same or will be in E , and all posts in E
or O will remain the same. �

Corollary 4.2: In any instance obtained from the copy of a
post in U , the maximum matching will remain the same.

Corollary 4.3: From any instance I with a popular match-
ing, every instance I∗ obtained from I by copying only posts
in E admits a popular matching

Proof. From Lemma 4.3, adding more copies from E will
not change the labels. In the best case we will obtain more
s-posts. Thus I is a sub-solution of any I∗. �

Lemma 4.3: In any instance obtained from the copy of a
post pi in E , the maximum matching and the label of any
vertex will remain the same.

Proof. Let M be the maximum matching used to obtain the
sets E , O, and U . First, if pi is unmatched then any copy
of this post will be in E . Second, if pi is matched, then by
definition it cannot be linked to an M -alternating path, and
it is matched to an applicant ai who is in O (see Figure 7).
Obviously, p′i will be only connected to an applicant vertex
that is in O. Thus, we will have only new M -alternating paths
from p′i but none of them will be an augmenting path. Thus
after the copy of a post in E , all vertices will remain the same
as the cardinality of the maximum matching. �

Alt.
Path

Reach no
unmatched

vertex

p′i

O E

E
piai

Fig. 7. Illustration of the copy of a post in E in G1.

From Lemmas 4.1, 4.2 and 4.3 we can deduce an important
result about the label behaviour of posts after a copy.

Theorem 4.1: From any copy of a post in E , O or U , every
post follows the automaton shown in Figure 8 (to characterise
its new label).



EO U

Fig. 8. Illustration of the automaton

2) Dominance rules: We introduce new dominance rules.
For any instance I, we denote by FI the set of posts that are
not f -posts or s-posts.

Lemma 4.4: Let I and I∗ be two instances where I∗ is
built from I by copying some posts. Any post in FI is in
FI∗.
Proof. Let pi be such a post. Clearly pi is in E . Now since
pi ∈ FI , then for all the applicants, their best choice in E
is never pi but other posts in E . From Theorem 4.1 any post
in E will always remain in E after any kind of copy. Thus,
the other posts will remain in E and pi will never become a
s-post. �

Theorem 4.2: Let I be an instance without a popular
matching, and let pi ∈ FI . Every instance with a popular
matching, obtained from I by copying some posts, admits a
popular matching even with the original number of copies of
pi from I.
Proof. If pi ∈ FI , it cannot be assigned to an applicant in
a popular matching. By Lemma 4.4, the proof is immediate. �

The first dominance rule works for any copy of any post.
Using the Corollary 4.3 another dominance rule can be de-
scribed for the posts in E .

We say that two instances I and I ′ have the same status if
I admits a popular matching iff I ′ admits a popular matching.

Theorem 4.3: Every instance obtained from an instance I
by copying a post pi in E has the same status as I or admits
a popular matching.
Proof. By using Lemma 4.3 and Corollary 4.3, one can
conclude easily that any copy of a post in E will not change
the labels, and may add more s-posts in the instance. This
can lead to finding a popular matching. �

Remark 4.1: These strong theoretical results consider only
instances with a maximum number of copies for the s-posts
and to avoid the posts in FI . These properties highlight the
difficulty in identifying posts that do not need to be copied to
find a popular matching. Indeed, the s-posts can change only
after a copy of U posts.

B. Modelling the FIXINGCOPIES Problem

We propose to explore a lexicographic instance tree where
the root node represents I0 and any other node is associated
with an instance obtained from its parent by increasing the
copies of one post. With lexicographic branching, we explore
the instance nodes where we increase the number of copies of
each post to the maximum before increasing the next ones.

Let χk(pi) be the number of copies fixed for a post pi
given an instance Ik. In this tree, any descendant Il of a
node Ik has the following property: ∀pi ∈ P, χl(pi) ≥
χk(pi). Thus from each node, we can apply all the results

obtained in Section IV-A. From Theorem 4.2, we can fix the
number of copies of some posts for an instance node and
its children. Therefore we apply the following linear time
dominance rule: Let Il be a child of Ik, then: ∀i, if pi ∈
FIk , then ∀Il, χl(pi) = χk(pi).

We consider the impact of the branching strategies based
on the O, E , U labelling. From Lemma 4.3 and Theorem 4.3
the copy from a post in E does not change the labels and
cannot remove popularity from other instances with copies
from different labels. This result shows that branching on
posts in E does not avoid some potential solutions in another
branches of the search tree. At last from Corollary 4.2 the copy
from a post in U does not change the maximum matching,
but changes at least two posts into E . This leads to new s-
post assignments, and thus to remove some posts in E from
an s-post assignment. We can conclude that only the posts
in U have a significant impact on the branching decision,
indeed exploring the nodes, where labels U are considered
last, should reduce the backtracking.

V. EMPIRICAL EVALUATION

We present an experimental study for the NP-hard variant of
FIXINGCOPIES problem. Our purpose is to evaluate the differ-
ent branching strategies as well as the impact of the dominance
rules. The exploration strategies are the six permutations to
rank in priority the three labels E ,O, U . The model that
we presented in Section IV-B is implemented in Python. We
use Numberjack [22] to model the standard popular matching
problem with the CP model of [7]. The timeout is fixed to 20
minutes for every instance.

We first run all the configurations on purely random in-
stances, but observed that these instances are easy to solve.
We therefore studied another family of instances based on a
notion of a master preference list. These instances are inspired
by real-world situations where often the preferences follow
a similar tendency. Irving et al. [14] considered the stable
marriage problem in the presence of master preference lists,
reflecting that the preferences of one gender are similar to each
other, and proved that many interesting variants remain hard
under this master list model. We adopted a similar approach
in these experiments.

We generated the instances as follows: the number of ap-
plicants a ∈ {100, 150, 200}; the number of posts p ∈ {a2 , a};
the upper bound ub ∈ { a20 , a10} for each post copies; and
each post has a probability h ∈ {50%, 70%, 90%} to be in
the applicant preference list following the order given by the
master preference list. For each configuration 〈a, p, ub, h〉 we
use 40 different randomised seeds.

We report a representative set of the results in Tables I
and II due to space. In these tables, every column is denoted by
X1a X2p X3ub X4h where: X1 is the number of applicants;
X2 is the number of posts; X3 is the upper bound for
copies; and X4 is the probability h described above. Each
row summarises the results of each branching strategy. For
instance, the rows starting with eou correspond to the search
strategy where every post in E has the priority to be copied



first, followed by the posts in O and the posts in U . Ties are
broken lexicographically. Note that we recompute the three
sets E , O, and U , every time a new copy is added. There
is a Boolean at the end of each configuration to indicate
whether we use the dominance rules (-1 with dominance and
-0 without). A run is said to be successful when a solution is
found or unsatisfiability is proven within the time limit. For
each configuration, we report the percentage of successful runs
%sol; the number of decisions (D); and the runtime (T ) in
seconds.

Consider the impact of the dominance rules. Clearly from
Tables I, and II, any configuration performs better when using
the dominance rules. Compare for example the first two lines,
euo-0 and euo-1, in Table I. The percentage of successful
runs is always higher when turning on the dominance rules
(i.e. eou-1). This is also true when comparing the average
runtime and the average number of decisions. Therefore, these
dominance rules, in addition to being computationaly cheap,
are extremely beneficial in practice.

Consider now the different branching strategies. In Table
I, in the rows eou-0, eou-1, oeu-0, oeu-1, the percentage of
successful runs is higher than the others strategies. Second, if
the dominance rules are turned on, then the best strategies
are the ones prioritising the branching of posts in E (e.g.
eou-1 and euo-1). Also, when the posts in E are not given
the top priority, it is always better to branch on them in the
second place (e.g. oeu-1 is better than oue-1). As explained
in Section IV-B, branching on E posts in priority reduces
the backtracking process (i.e., see the number of decisions).
However, if the post is either an f -post or s-post, as enforced
by the first dominance rule, the new copy will be included
in some domains and will increase the likelihood of finding a
solution. Regarding the impact of copying the nodes in U , as
we concluded in Section IV-B, any copy of these posts has an
important impact. Branching on U for last will decrease the
number of decisions and increase the number of solutions.

Last, we notice two observations regarding the hardness of
the problem. First, if we increase the upper bound of the copies
it will increase the number of successful runs as well. Second,
one can see from Tables I and II that increasing the similarity
between the preference lists does not make the instances
easier in general (i.e. when h ∈ {70%, 90%}). Therefore,
increasing the number of applicants, Table I and II, the impact
of the dominance rules is more obvious. The observations we
made previously are also true for the experiments that are not
reported here due to space limitations.

VI. CONCLUSION

We studied two important variants of popular matching:
the optimal popular matching, and the popular matching with
copies. We reported the first polynomial time algorithm to
find optimal popular matching in the presence of ties in the
preference lists. Next, we showed novel graph properties and
new dominance rules for the popular matching with copies.
Our experiments on hard instances of the popular matching
problem with copies showed essentially the key aspects of

TA
B

L
E

I
F

IX
IN

G
C

O
P

IE
S
:R

E
S

U
LT

S
F

O
R
1
0
0

A
P

P
L

IC
A

N
T

S
,5

0
P

O
S

T
S
,1

0
%

A
N

D
2
0
%

U
P

P
E

R
B

O
U

N
D

,A
N

D
h
=

5
0
%

,h
=

7
0
%

h
=

9
0
%

10
0a

50
p

10
u
b

50
h

10
0a

50
p

2
0
u
b

5
0
h

1
0
0
a

5
0
p

1
0
u
b

7
0
h

1
0
0
a

5
0p

2
0
u
b

7
0
h

1
0
0
a

5
0p

1
0
u
b

9
0
h

1
0
0
a

5
0p

2
0
u
b

9
0
h

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

eu
o-

0
10

%
43

1.
25

39
.2

4
90

%
86

3.
33

19
3.

41
15

%
12

77
.5

0
21

6.
40

92
%

85
4.

94
18

5.
04

7%
27

16
.6

6
48

5.
69

95
%

82
6.

73
18

3.
16

eu
o-

1
15

%
11

3.
33

5.
82

10
0%

17
6.

42
10

.0
7

20
%

12
6.

12
6.

97
10

0%
17

2.
80

9.
71

20
%

10
4.

12
5.

38
10

0%
16

6.
87

9.
32

eo
u-

0
15

%
42

0.
83

38
.3

5
10

0%
81

4.
82

16
3.

30
20

%
42

7.
62

39
.3

2
10

0%
81

5.
47

16
4.

37
20

%
42

4.
75

39
.4

6
10

0%
78

2.
47

15
4.

56
eo

u-
1

15
%

11
3.

33
5.

81
10

0%
17

6.
42

10
.0

4
20

%
12

6.
12

6.
96

10
0%

17
2.

80
9.

75
20

%
10

4.
12

5.
41

10
0%

16
6.

87
9.

35
ue

o-
0

10
%

43
1.

25
39

.3
4

90
%

86
3.

41
19

1.
09

15
%

12
77

.5
0

21
7.

04
92

%
86

4.
81

18
9.

37
7%

27
13

.6
6

48
5.

61
95

%
85

9.
21

18
9.

62
ue

o-
1

10
%

13
2.

00
7.

38
90

%
21

1.
61

13
.6

4
15

%
96

5.
50

79
.1

92
%

20
0.

32
12

.2
8

10
%

35
68

.7
5

24
6.

01
97

%
30

2.
53

24
.2

2
uo

e-
0

10
%

29
8.

25
34

.4
2

80
%

61
8.

25
13

0.
00

7%
36

0.
00

41
.4

4
70

%
61

2.
89

12
4.

37
2%

93
.0

0
6.

71
75

%
56

3.
26

11
5.

71
uo

e-
1

10
%

93
.5

0
6.

33
87

%
27

0.
57

25
.1

4
7%

99
.0

0
6.

61
77

%
18

7.
19

15
.5

9
2%

84
.0

0
5.

84
92

%
33

9.
16

29
.8

9
oe

u-
0

15
%

26
5.

83
25

.5
7

10
0%

41
4.

32
67

.0
5

20
%

38
7.

62
44

.3
6

10
0%

39
8.

92
57

.7
7

20
%

32
3.

87
34

.0
6

10
0%

39
2.

32
60

.3
3

oe
u-

1
15

%
91

.8
3

5.
90

10
0%

11
9.

82
8.

54
20

%
12

3.
25

8.
48

10
0%

12
2.

00
8.

67
20

%
96

.6
2

6.
03

10
0%

12
0.

15
9.

36
ou

e-
0

10
%

29
8.

25
34

.4
2

80
%

61
8.

18
13

0.
66

7%
36

0.
00

40
.4

0
72

%
59

4.
75

12
1.

51
2%

93
.0

0
6.

72
75

%
56

3.
26

11
7.

02
ou

e-
1

10
%

93
.5

0
6.

28
87

%
27

0.
51

25
.2

4
7%

99
.0

0
6.

64
80

%
18

4.
06

15
.4

6
2%

84
.0

0
5.

84
92

%
33

7.
86

30
.8

1



TA
B

L
E

II
F

IX
IN

G
C

O
P

IE
S
:R

E
S

U
LT

S
F

O
R
2
0
0

A
P

P
L

IC
A

N
T

S
,1

0
0

P
O

S
T

S
,1

0
%

A
N

D
2
0
%

U
P

P
E

R
B

O
U

N
D

,A
N

D
h
=

5
0
%

,h
=

7
0
%

h
=

9
0
%

20
0
a

10
0
p

20
u
b

50
h

20
0
a

10
0
p

40
u
b

50
h

20
0
a

10
0
p

20
u
b

70
h

2
0
0
a

1
0
0
p

4
0
u
b

7
0
h

2
0
0
a

1
0
0
p

2
0u
b

9
0
h

2
0
0
a

1
0
0
p

4
0u
b

9
0h

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

%
so
l

D
T

eu
o-

0
0%

-
-

0%
-

-
0%

-
-

0%
-

-
0%

-
-

0%
-

eu
o-

1
17

%
88

.2
8

28
3.

14
10

0%
41

1.
95

13
5.

93
12

%
24

0.
00

64
.2

5
10

0%
37

8.
82

11
9.

63
15

%
27

1.
50

78
.6

5
10

0%
41

9.
10

14
4.

03
eo

u-
0

0%
-

-
0%

-
-

0%
-

-
0%

-
-

0%
-

-
0%

-
-

eo
u-

1
17

%
88

.1
5

28
3.

14
10

0%
41

1.
95

13
5.

25
12

%
24

0.
00

64
.3

3
10

0%
37

8.
82

11
9.

59
15

%
27

1.
50

79
.0

6
10

0%
41

9.
10

43
.3

1
ue

o-
0

0%
-

-
0%

-
-

0%
-

-
0%

-
-

0%
-

-
0%

-
ue

o-
1

12
%

89
.7

8
30

8.
60

87
%

48
2.

25
18

6.
02

0%
-

-
90

%
44

2.
38

16
3.

49
5%

30
8.

00
85

.8
9

95
%

49
2.

39
19

8.
31

uo
e-

0
0%

-
-

17
%

49
7.

54
60

9.
28

0%
-

-
10

%
42

5.
50

31
1.

79
0%

-
-

17
%

37
2.

00
23

4.
24

uo
e-

1
10

%
82

.4
8

22
2.

50
70

%
33

4.
21

15
5.

38
0%

-
-

72
%

34
3.

27
16

2.
71

5%
29

5.
50

12
0.

29
87

%
31

6.
60

14
4.

61
oe

u-
0

2%
73

7.
76

91
0.

00
20

%
46

1.
35

61
3.

75
2%

11
17

.0
0

11
41

.2
0

40
%

56
6.

68
42

3.
04

2%
96

5.
00

92
1.

70
25

%
56

4.
80

44
1.

0
oe

u-
1

17
%

11
2.

91
27

9.
28

10
0%

29
3.

52
13

7.
69

12
%

23
3.

00
88

.1
9

10
0%

27
1.

47
12

2.
32

15
%

26
8.

83
10

5.
39

97
%

30
8.

43
15

0.
64

ou
e-

0
2%

74
3.

26
91

0.
00

17
%

50
0.

43
60

8.
71

0%
-

-
10

%
42

4.
75

30
3.

19
0%

-
-

20
%

34
9.

25
21

6.
11

ou
e-

1
10

%
83

.4
5

22
2.

50
70

%
33

4.
07

15
9.

30
0%

-
-

72
%

34
3.

17
16

7.
48

5%
29

5.
50

12
1.

25
90

%
31

3.
08

14
5.

22

a good branching strategy as well as the efficiency of our
dominance rules.

ACKNOWLEDGMENTS

This research has been funded by Science Foundation
Ireland (SFI) under Grant Number SFI/12/RC/2289.

REFERENCES

[1] D. F. Manlove, Algorithmics of matching under preferences. World
Scientific, 2013.

[2] N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre, “Assigning
papers to referees,” Algorithmica, vol. 58, no. 1, pp. 119–136, 2010.

[3] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, pp. 9–15,
1962.

[4] D. J. Abraham, R. W. Irving, and D. Manlove, “The student-project
allocation problem,” in ISAAC 2003, Kyoto, Japan, December 15-17,
2003, Proceedings, 2003, pp. 474–484.

[5] P. Gardenfors, “Match making: Assignments based on bilateral prefer-
ences,” Systems Research and Behavioral Science, vol. 20, pp. 166–173,
1975.

[6] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, “Popular
matchings,” SIAM J. Comput., vol. 37, no. 4, pp. 1030–1045, 2007.

[7] D. S. Chisca, M. Siala, G. Simonin, and B. O’Sullivan, “A
cp-based approach for popular matching,” in Proceedings of the
Thirtieth AAAI, 2016, Phoenix, Arizona, USA., 2016, pp. 4202–4203.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12138

[8] T. Kavitha and M. Nasre, “Optimal popular matchings,” Discrete
Applied Mathematics, vol. 157, no. 14, pp. 3181–3186, 2009. [Online].
Available: http://dx.doi.org/10.1016/j.dam.2009.06.004

[9] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch,
“Rank-maximal matchings,” ACM Transactions on Algorithms, vol. 2,
no. 4, pp. 602–610, 2006.

[10] T. Kavitha and M. Nasre, “Popular matchings with variable item copies,”
Theor. Comput. Sci., vol. 412, no. 12-14, pp. 1263–1274, 2011.

[11] T. Kavitha, M. Nasre, and P. Nimbhorkar, “Popularity at minimum cost,”
J. Comb. Optim., vol. 27, no. 3, pp. 574–596, 2014.

[12] D. F. Manlove, C. T. S. Sng, D. F. Manlove, and C. T. S. Sng, “Uk
popular matchings in the capacitated house allocation problem,” 2006.

[13] C. T. Sng and D. F. Manlove, “Popular matchings in the weighted
capacitated house allocation problem,” Journal of Discrete Algorithms,
vol. 8, no. 2, pp. 102 – 116, 2010.

[14] R. W. Irving, D. F. Manlove, and S. Scott, “The stable marriage
problem with master preference lists,” Discrete Applied Mathematics,
vol. 156, no. 15, pp. 2959 – 2977, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X0800022X

[15] L. Lovász and M. Plummer, Matching Theory (Annals of Discrete Math
Volume 29). North-Holland, Amsterdam, 1986.

[16] E. McDermid and R. W. Irving, “Popular matchings: Structure and
algorithms,” in Computing and Combinatorics, 15th Annual Interna-
tional Conference, COCOON 2009, Niagara Falls, NY, USA, 2009,
Proceedings, 2009, pp. 506–515.

[17] T. Matsui and T. Hamaguchi, “Characterizing a set of popular matchings
defined by preference lists with ties,” CoRR, vol. abs/1601.03458, 2016.

[18] H. W. Kuhn and B. Yaw, “The hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[19] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, pp.
248–264, Apr. 1972. [Online]. Available: http://doi.acm.org/10.1145/
321694.321699

[20] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, Jul. 1987.

[21] C. Berge, “Two Theorems in Graph Theory,” Proceedings of the National
Academy of Science, vol. 43, pp. 842–844, Sep. 1957.

[22] E. Hebrard, E. O’Mahony, and B. O’Sullivan, “Constraint programming
and combinatorial optimisation in numberjack,” in CPAIOR 2010,
Bologna, Italy, 2010. Proceedings, 2010, pp. 181–185. [Online].
Available: https://doi.org/10.1007/978-3-642-13520-0 22


