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Abstract

The growing interest in explainable artificial intelligence
(XAI) for critical decision making motivates the need for in-
terpretable machine learning (ML) models. In fact, due to
their structure (especially with small sizes), these models are
inherently understandable by humans. Recently, several exact
methods for computing such models are proposed to over-
come weaknesses of traditional heuristic methods by provid-
ing more compact models or better prediction quality.
Despite their compressed representation of Boolean func-
tions, Binary decision diagrams (BDDs) did not gain enough
interest as other interpretable ML models. In this paper, we
first propose SAT-based models for learning optimal BDDs (in
terms of the number of features) that classify all input exam-
ples. Then, we lift the encoding to a MaxSAT model to learn
optimal BDDs in limited depths, that maximize the number of
examples correctly classified. Finally, we tackle the fragmen-
tation problem by introducing a method to merge compatible
subtrees for the BDDs found via the MaxSAT model. Our em-
pirical study shows clear benefits of the proposed approach
in terms of prediction quality and interpretability (i.e., lighter
size) compared to the state-of-the-art approaches.

Introduction
Due to the increasing concerns in understanding the rea-
soning behind AI decisions for critical applications, inter-
pretable Machine Learning (ML) models gained a lot of at-
tention. Examples of such ML applications include job re-
cruitment, bank credit applications, and justice (Voigt and
Bussche 2017). Most of traditional approaches for build-
ing interpretable models are greedy, for example, deci-
sion trees (Breiman et al. 1984; Quinlan 1986, 1993), rule
lists (Cohen 1995; Clark and Boswell 1991), and decision
sets (Lakkaraju, Bach, and Leskovec 2016). Compared to
traditional approaches, exact methods offer guarantee of
optimality, such as model size and accuracy. In this con-
text, combinatorial optimisation methods, such as Constraint
Programming (Bonfietti, Lombardi, and Milano 2015; Ver-
haeghe et al. 2020), Mixed Integer Programming (Angelino
et al. 2018; Verwer and Zhang 2019; Aglin, Nijssen, and
Schaus 2020), or Boolean Satisfiablility (SAT) (Bessiere,
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Hebrard, and O’Sullivan 2009; Narodytska et al. 2018; Avel-
laneda 2020; Hu et al. 2020; Janota and Morgado 2020;
Yu et al. 2020) have been successfully used to learn inter-
pretable models. These declarative approaches are particu-
larly interesting since they offer certain flexibility to handle
additional requirements when learning a model.

By providing compact representations for Boolean func-
tions, Binary Decision Diagrams (BDDs) (Akers 1978;
Moret 1982; Bryant 1986; Knuth 2009) are widely studied
for hardware design, model checking, and knowledge rep-
resentation. In the context of ML, BDD could be viewed as
an intrepretable model for binary classification. In addition,
they were extended for multi-classification, known as deci-
sion graphs and heuristic methods were proposed in (Oliver
1992; Kohavi 1994; Kohavi and Li 1995; Mues et al. 2004).
Moreover, (Ignatov and Ignatov 2017) proposed decision
stream, a similar topology to BDD based on merging similar
subtrees in each split made in decision trees to improve the
generalization. (Oliver 1992; Kohavi 1994) showed that de-
cision graphs could avoid the replication problem and frag-
mentation problem of decision trees effectively, which BDDs
also could avoid in binary classification. This fact indicates
that generally in the practice of ML, a BDD have a smaller
size than the corresponding decision tree.

In this paper, we introduce a SAT-based model for learn-
ing optimal BDDs with the smallest number of features clas-
sifying all examples correctly, and a lifted MaxSAT-based
model to learn optimal BDDs minimizing the classification
error. We assume that all BDDs are ordered and reduced1, the
limitation on the depth for a BDD, corresponds to the number
of features to be selected by our model. To the best of our
knowledge, (Cabodi et al. 2021) is the only exact method
of learning optimal BDDs in the context of ML. The au-
thors proposed a SAT model to learn optimal BDDs with the
smallest sizes that correctly classify all examples. In their
approach, the depth of the BDD is not restrained. In fact, it
is possible that the constructed BDD is small in size (number
of nodes) and high in depth. As the BDD is ordered, this ap-
proach could not limit the number of features used, making
it not quite comparable with our proposition. Another re-
lated work is in (Hu et al. 2020) where the authors consider
a MaxSAT model to learn optimal decision trees minimizing

1The two notions are defined in the background



the classification error within a limited depth. The usage of
the same solving methodology with the same objective func-
tion and the depth limit, makes these two MaxSAT models
comparable. Finally, in order to increase the scalability of
our approach, we propose a heuristic extension based on
a simple pre-processing step. For the sake of space, some
details are left in a technical report (Hu, Huguet, and Siala
2022).

Technical Background
Classification
Consider a dataset E = {eq, . . . , eM} with M examples.
Each example eq ∈ E is characterized by a list of binary
features Lq = [f1, . . . , fK ] and a binary target clq , repre-
senting the class of the example (clq ∈ {0, 1}). The data set
is partitioned into E+ and E−, where E+ (respectfully E−)
is the set of positive (respectifully negative) examples. That
is, clq = 1 iff eq ∈ E+ and clq = 0 iff eq ∈ E−. We assume
that, ∀1 ≤ q, q′ ≤ M , Lq = Lq′ implies clq = clq′ .

Let ϕ be the function defined by ϕ(Lq) = clq , ∀q ∈
[1,M ]. The classification problem is to compute a function
γ (called a classifier) that matches as accurately as possi-
ble the function ϕ on examples eq of the training data and
generalizes well on unseen test data.

Binary Decision Diagrams
Binary Decision Diagrams (BDDs) are used to provide com-
pact representation of Boolean functions. Let [x1, . . . , xn]
be a sequence of of n Boolean variables. A BDD is a rooted,
directed, acyclic graph G. The vertex set V of G contains
two types of vertices. A terminal vertex v is associated to
a binary value: value(v) ∈ {0, 1}. A nonterminal vertex v,
is associated to a Boolean variable xi and has two children
left(v), right(v) ∈ V . In this case, index(v) = i ∈ {1, . . . , n}
is the index of the Boolean variable associated to v.

We assume that all BDDs are ordered and reduced. These
two restrictions are widely considered in the literature as
they guarantee a unique BDD for a given Boolean func-
tion. The restriction ordered indicates that for any non-
terminal vertex v, index(v) < index(left(v)) and index(v)
< index(right(v)). The restriction reduced indicates that
the graph contains no nonterminal vertex v with left(v) =
right(v), nor does it contain distinct nonterminal vertices
v and v′ having isomorphic rooted sub-graphs. Therefore,
given an ordered reduced BDD G with root v, the associated
Boolean function can be recursively obtained with the Shan-
non expansion process (Shannon 1938).

Let g be a Boolean function defined over a sequence X =
[x1, . . . , xn] of n Boolean variables. The function g can be
represented by a truth table that lists the 2n values of all
assignments of the n variables. The value of the truth table
is therefore associated to a string of 2n binary values. A truth
table β of length 2n is said to be of order n. A truth table β of
order n > 0 has the form β0β1, where β0 and β1 are truth
tables of order n − 1, and β0 and β1 are called subtables
of β. The subtables of subtables are also considered to be
subtables, and a table is considered as a subtable of itself. A
bead of order n is a truth table T of order n that does not

have the form αα where α is a subtable of T . The beads
of g are the subtables of its truth table that happen to be
beads. Proposition 1 from (Knuth 2009) relates truth table
and binary decision diagram for the same Boolean function.
Proposition 1. All vertices in V of a binary decision dia-
gram G, are in one-to-one correspondence with the beads of
the Boolean function g it represents.

Based on Proposition 1, we can produce the ordered and
reduced binary decision diagram of a Boolean function by
finding its beads and combine its beads with its sequence of
variables.
Example 1. Consider the Boolean function from (Knuth
2009): g1(x1, x2, x3) = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x1 ∨ x3).
The binary string associated to its truth table β is 00010111.
The beads of β are {00010111, 0001, 0111, 01, 0, 1}.

From Proposition 1, we can draw the BDD with the beads
found, shown as the left part of Figure 1. The dashed (solid)
line of each vertex indicates the left (right) child. Then, we
can replace the beads by vertices associated with the se-
quence of Boolean variables. The final binary decision dia-
gram for g1 is shown as the right part of Figure 1.
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Figure 1: The Binary decision diagram for g1(x1, x2, x3)

Oblivious Read-Once Decision Graphs
Oblivious Read-Once Decision Graphs (OODGs) are pro-
posed in (Kohavi 1994) to overcome some limitations of
decision trees for multi-classification, like replication and
fragmentation problem. We refer the readers to (Kohavi and
Li 1995; Kohavi 1994) for details on OODGs. An OODG
is a rooted, directed, acyclic graph, which contains termi-
nal category nodes labelled with classes to make decisions,
and non-terminal branching nodes labelled with features to
make splits. The property “read-once” indicates that each
feature occurs at most once along any path from the root to
a category node. The property “levelled” indicates that the
nodes are partitioned into a sequence of pairwise disjoint
sets, representing the levels, such that outgoing edges from
each level terminate at the next level. The property “oblivi-
ous” extends the idea of “levelled” by guaranteeing that all
nodes at a given level are labelled by the same feature.

For the classification process, top-down and bottom-up
heuristic methods for building OODGs are proposed in (Ko-
havi and Li 1995; Kohavi 1994). Here, we introduce briefly
the top-down heuristic method, which is similar to the
heuristic methods C4.5 and CART for computing decision
trees. The top-down heuristic induction for OODGwith given
depth contains three critical phases: (1) selecting a sequence
of features with the help of mutual information (the differ-
ence of conditional entropy (Cover and Thomas 2006)); (2)



growing an oblivious decision tree (ODT) by splitting the
dataset with features in the sequence selected; and (3) merg-
ing isomorphic and compatible subtrees from top to down
to build the OODG. When building the ODT, the algorithm
marks nodes that capture no example of the dataset as “un-
knwon”. For the merging phase, two subtrees are compatible
if at least one root is labelled as “unknown”, or if the two
root nodes are labelled with same feature and their corre-
sponding children are the roots of compatible subtrees. The
ODT grown could make classifications directly by assigning
“unknown” nodes with the majority class of their parents.
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Figure 2: An example of two compatible subtrees (the left
two) and the merged tree (the right one) from (Kohavi and
Li 1995)

Figure 2 shows an example of two compatible subtrees
and the merged tree, where “unknown” nodes are labelled
as “u”. Merging compatible subtrees changes the bias by as-
suming that a “unknown” node is likely to behave the same
as another child if they belong to compatible subtrees.

In binary classification for binary datasets, OODGs could
be considered equivalent to BDDs, as the properties “oblivi-
ous” and “read-once” for OODGs are same as property “or-
dered” for BDDs. In addition, the use of merging compatible
subtrees could also be applied for BDDs.

SAT and MaxSAT
We use standard terminology for Boolean Satisfiabily (Biere
et al. 2009). A literal is a Boolean variable or its negation,
and a clause is a disjunction of literals. An assignment of
variables satisfies a clause if one of its literals is true. Given
a set of Boolean variables and a set of clauses defined over
these variables, the SAT problem can be defined as finding
an assignment of the variables such that all the clauses are
satisfied. Maximum Satisfiability (MaxSAT) is an optimiza-
tion version of the SAT problem, where the clauses are par-
titioned into hard and soft clauses. Here we consider the
Partial MaxSAT problem, that is to find an assignment of
the Boolean variables that satisfies all the hard clauses and
maximizes the number of satisfied soft clauses.

(Max)SAT-Based Model for Binary Decision
Diagrams

In this section, we present our approach for learning BDDs
for binary classification using SAT and MaxSAT.

Problem Definition
We firstly consider the following decision problem for clas-
sification with BDD in a given depth.

• Pbdd(E , H) : Given a set of examples E , is there a BDD
of depth H that classifies correctly all examples in E?

Notice that the algorithm for Pbdd(E , H) can be used to the
alternative problem of optimizing a BDD that classifies all
examples in the dataset correctly with a minimum depth. For
that purpose, one can use a linear search that takes an initial
depth H0 as input and progressively increases or decreases
this value depending on the result of solving Pbdd(E , H).

Next, we consider another optimization problem for the
classification with BDD in a limited depth.

• P ∗
bdd(E , H) : Given a set of examples E , find a BDD of

depth H that maximises the number of examples in E that
are correctly classified.

We propose an initial SAT model for the decision prob-
lem Pbdd(E , H). Then, we propose an improved version in
tighter formula size. Finally, we show how the improved
SAT model for Pbdd(E , H) can be used effectively to solve
the optimization problem P ∗

bdd(E , H) with MaxSAT.

SAT Model for Pbdd(E , H)

As shown before, a BDD of depth H could be generated
from the combination of a sequence of Boolean variables
of size H: [x1, . . . , xH ], and a truth table of order H as-
sociated to a Boolean function. To solve the classification
problem Pbdd(E , H), we then have to find a sequence of bi-
nary features of size H that maps one-to-one the sequence of
Boolean variables, and a truth table associated to a Boolean
function that well-classified all examples. We denote the se-
quence of binary features found as feature ordering. There-
fore, the SAT encoding consists of two parts:

• Part 1: Constraints for selecting features of the dataset
into the feature ordering of size H .

• Part 2: Constraints for generating a truth table that clas-
sifies all examples of E correctly with the selected feature
ordering.

To realize the SAT encoding, we introduce two sets of
Boolean variables as follow:

• air: the variable air is 1 iff feature fr is selected as i-th
feature in the feature ordering, where i = 1, . . . ,H , r =
1, . . . ,K.

• cj : the variable cj is 1 iff the j-th value of the truth table
is 1, where j = 1, . . . , 2H .

The set of variables air guarantees the ordered restriction.
Then, we introduce two constraints (1) and (2) for the fea-
ture ordering. Constraint 1 ensures that any feature fr can
be selected at most once.

H∑
i=1

air ≤ 1, r = 1, . . . ,K (1)

Then, there is exacty one feature selected for each index of
the feature ordering.

K∑
r=1

air = 1, i = 1, . . . ,H (2)



We use the classical sequential counter encoding pro-
posed in (Sinz 2005) to model constraints (1) and (2) as a
Boolean formula.

The truth table we are looking for is the binary string of
the values of variables c1c2 . . . c2H . To avoid the first feature
selected makes useless split, we need to make sure that the
truth table is a bead.

2H−1∨
j=1

(cj ⊕ cj+2H−1) (3)

There is a relationship between the values of a truth ta-
ble and the assignments of the given sequence of Boolean
variables. For example, the first value of a truth table corre-
sponds to the assignment that x1 = 0 and x2 = 0. Therefore,
we define the following function to obtain the value of the
i-th feature in the feature ordering of size H given the j-th
value in the truth table.

rel(i, j) = ⌊j − 1

2H−i
⌋ mod 2, i ∈ [1, H], j ∈ [1, 2H ] (4)

For an example eq ∈ E , we denote the value of the fea-
ture fr as σ(r, q). If rel(i, j) = σ(r, q), it indicates that for
example eq , the feature fr can be at the i-th position in the
feature ordering to produce the j-th value in the truth table.
To classify all examples correctly, we ensure that no exam-
ple follows an assignment in the truth table leading to its
opposite class. Thus, we propose the following constraints
for classification. Let eq ∈ E+, for all j = 1, . . . , 2H :

¬cj →
H∨
i=1

K∨
r=1

(air ∧ rel(i, j)⊕ σ(r, q)) (5)

That is, for every positive example eq , any variable cj as-
signed to 0 must be associated to an assignment of features
that contains at least one feature-value that is not coherent
with eq . For negative examples, we use a similar idea. Let
eq ∈ E−, for all j = 1, . . . , 2H :

cj →
H∨
i=1

K∨
r=1

(air ∧ rel(i, j)⊕ σ(r, q)) (6)

E0 f1 f2 f3 f4 c
e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

Table 1: A binary classification dataset

f1

f2 0

1 0

Figure 3: Deci-
sion Tree found

Example 2. Let E0 be the given set of examples shown in Ta-
ble 1. Figure 3 shows the corresponding decision tree clas-
sifying all examples correctly. We consider to encode a BDD
with depth H = 2 classifying all examples of E0 correctly.

The two sets of variables are: {a11, a21, a12, a22, a13, a23, a14, a24},
and {c1, c2, c3, c4}. The constraints 1, 2, and 3 are:

a11 + a21 ≤ 1, a12 + a22 ≤ 1, a13 + a23 ≤ 1, a14 + a24 ≤ 1

a11 + a12 + a13 + a14 = 1, a21 + a22 + a23 + a24 = 1

(c1⊕c3) ∨ (c2 ⊕ c4)

For classification constraints (i.e., 5 and 6), we show the
encoding of e1 ∈ E− with for value c1. The encoding for
other examples and other values is similar.

c1 → (a11 ∧ 0⊕ 1) ∨ (a12 ∧ 0⊕ 0) ∨ (a13 ∧ 0⊕ 1)

∨(a14 ∧ 0⊕ 0) ∨ (a21 ∧ 0⊕ 1) ∨ (a22 ∧ 0⊕ 0)

∨(a23 ∧ 0⊕ 1) ∨ (a24 ∧ 0⊕ 0)

This could be simplified as follow:

¬c1 ∨ a11 ∨ a13 ∨ a21 ∨ a23

x1 = f1 x2 = f2
0 0 c1 = 1
0 1 c2 = 0
1 0 c3 = 0
1 1 c4 = 0

Table 2: Truth table solution for
BDD of depth 2 classifying all ex-
ample of E0

f1

f2

01

Figure 4: The BDD found

The values of truth table found by the SAT model are
shown in Table 2, the feature ordering is [f1, f2]. More-
over, Table 2 illustrates the relationship between the val-
ues of truth table and the assignments of the given sequence
Boolean variable of size 2. Figure 4 shows the correspond-
ing BDD. This BDD classifies all examples of the dataset E0
correctly, also provides more compact representation than
the decision tree shown in Figure 3.

We refer to this first SAT encoding for Pbdd(E , H) as
BDD1. The size of BDD1 is given in Proposition 2.

Proposition 2. For a Pbdd(E , H) problem with K binary
features and M examples, the encoding size (in terms of the
number of literals used in the different clauses) of BDD1 is
O(M ×H ×K × 2H).

Proof. Notice first that j ranges from 1 to 2H , i ranges from
1 to H , and r ranges from 1 to K. The term M × 2H re-
sults from constraint (5) and (6), each contains O(H × K)
literals. For the remaining constraints, it is O(H × K) for
constraints (1) and (2), O(2H) for constraint (3).

The size of BDD1 is quite huge due to the size of clauses
generated by constraints (5) and (6) for classification. This
makes BDD1 impractical in practice.



An Improved SAT Model for Pbdd(E , H)

In order to reduce the size of BDD1, we propose new clas-
sification constraints to replace constraints (5) and (6). The
idea is that every positive (respectivery negative) example
follows an assignment leading to a positive (respectively
negative) value of the truth table. We introduce a new set
of Boolean variables:

• dqi : The variable dqi is 1 iff for example eq the value of
the i-th feature selected in feature ordering is 1, where
i = 1, . . . ,H , q = 1, . . . ,M .

Then, We describe constraints that relate the values of
features for each example eq ∈ E , for i = 1, . . . ,H ,
r = 1, . . . ,K:

air → dqi if σ(q, r) = 1

air → ¬dqi if σ(q, r) = 0
(7)

Let eq ∈ E+, we have 2H constraints for classifying ex-
amples correctly:

¬dq1 ∧ ¬dq2∧ · · · ∧ ¬dqH−1 ∧ ¬dqH → c1

¬dq1 ∧ ¬dq2∧ · · · ∧ ¬dqH−1 ∧ dqH → c2

. . .

dq1 ∧ dq2∧ · · · ∧ dqH−1 ∧ dqH → c2H

(8)

That is, any positive example follows an assignment of
the feature ordering that leads to a positive value in the truth
table.

Similarly, for any eq ∈ E−, we also have 2H constraints:

¬dq1 ∧ ¬dq2∧ · · · ∧ ¬dqH−1 ∧ ¬dqH → ¬c1
¬dq1 ∧ ¬dq2∧ · · · ∧ ¬dqH−1 ∧ dqH → ¬c2

. . .

dq1 ∧ dq2∧ · · · ∧ dqH−1 ∧ dqH → ¬c2H

(9)

We refer to this new SAT encoding for Pbdd(E , H) as
BDD2. The encoding size of BDD2 is given in Proposition 3.
Proposition 3. For a Pdd(E , H) problem with K binary fea-
tures and M examples, the encoding size of the SAT encod-
ing (BDD2) is O(M ×H × (2H +K)).

Proof. The term M × H × K results from constraint (7).
For constraints (8) and (9), for each example, there are 2H

clauses containing H + 1 literals. The term M × H × 2H

results from that.

Propositions 2 and 3 show a clear theoretical advantage of
BDD2 compared to BDD1 in terms of the encoding size, thus
scalability.

MaxSAT Model for P ∗
bdd(E , H) :

We now present a MaxSAT encoding for the optimization
problem P ∗

bdd(E , H). That is, given a set of examples E , find
a binary decision diagram of depth H that maximises the
number of examples correctly classified.

We transform the SAT encoding of BDDs into a MaxSAT
encoding following a simple technique. The idea is to keep

structural constraints as hard clauses and classification con-
straints as soft clauses. We consider BDD2 as it has a re-
duced size. Constraints (1), (2), (3) and (7) are kept as hard
clauses. To classify the examples, we declare all clauses of
constraints (8) and (9) as soft clauses. For any example eq ,
the number of satisfied soft clauses associated to eq is either
2H (indicating eq is classified correctly), or 2H − 1 (indi-
cating eq is classified wrongly). Therefore, the objective of
maximising the number of satisfied soft clauses is equiva-
lent to maximise the number of examples that are correctly
classified.

Merging Compatible Subtrees
Consider a BDD G found by a MaxSAT solver and its asso-
ciated truth table β. Based on the feature ordering of G, it is
possible that some values in β capture no (training) example
(Equivalent to “unknown” nodes for OODG). Such values are
decided by the MaxSAT solver in an arbitrary way, which
gives a certain bias in generalisation. We propose to merge
compatible subtrees in G in order to handle this bias. This
will result in changing some values in the truth table β (i.e.
the arbitrary ones decided by MaxSAT).

We propose a post-processing procedure to merge com-
patible subtrees using the following three phase: (1) update
the truth table β by replacing the values of β that capture no
examples with a special value “u”; (2) for each level, check
the beads, where “u” can be used to match 1 or 0, and cre-
ate a node for each bead; (3) for each level, after creating
the nodes, check the matches between all subtables of the
next level. For matched subtables, update the corresponding
beads of current level to eliminate the “u” values.

Experimental Results
We present our large experimental study to evaluate empir-
ically our propositions on different aspects2. We consider
datasets from CP4IM 3. These datasets are binarized with the
one-hot encoding. Preliminary experiments on the decision
problem Pbdd(E , H) confirm the great improvements the en-
coding size of BDD2 compared to BDD1, as shown in propo-
sitions 2 and 3. However, solving the optimization problem
of finding a BDD that classifies all examples in the dataset
correctly with a minimum depth using linear calls to BDD1
and BDD2 was hard. We therefore focus on the optimisation
problem P ∗

bdd(E , H). This is also motivated by the fact that
classifying all examples correctly induces overfitting.

At first, we evaluate the prediction performance between
the proposed MaxSAT-BDDmodel and the heuristic method,
ODT and OODG. Next, we compare our model with an ex-
act method for building decision trees using MaxSAT (Hu
et al. 2020) in terms of prediction quality, model size, and
encoding size. Finally, we propose and evaluate a simple
heuristic version of our encoding to tackle scalability. For
each dataset, we use random 5-fold cross-validation with
5 different seeds. All experiments were run on a clus-
ter using Xeon E5-2695 v3@2.30GHz CPU and running

2The source code and the datasets are available online at
https://gitlab.laas.fr/hhu/bddencoding

3https://dtai.cs.kuleuven.be/CP4IM/datasets/



Figure 5: The left scatter shows the average training accuracy of OODG and MaxSAT model. The middle boxplots show the
average testing accuracy with different biases: MaxSAT BDD-P(blue), MaxSAT BDD-C(yellow), MaxSAT BDD-S(green),
ODT(red), OODG(purple). The right scatter shows the average testing accuracy of MaxSAT-BDD and its heuristic approach.

xUbuntu 16.04.6 LTS. The MaxSAT solver we used is Loan-
dra (Berg, Demirović, and Stuckey 2019), an efficient in-
complete MaxSAT solver that return the best solution found
within a limited computation time or report optimality. For
each experiment, the time limit for generating formulas and
the time limit for solver are set to 15 minutes.

Comparison with Existing Heuristic Approaches
We consider the P ∗

bdd(E , H) problem with 5 different depths
H ∈ {2, 3, 4, 5, 6}. We compare our MaxSAT-BDD model
with the approach proposed in (Kohavi and Li 1995) to
learn ODT and OODG. For the heuristic methods, as de-
scribed in the background section, after merging isomor-
phic and compatible subtrees of ODT, the corresponding
OODG changes the bias for those “unknown” nodes. In fact,
different bias affects the prediction for unseen examples,
but not for learned examples. Therefore, the training accu-
racy of ODT and OODG are equals, but the testing accuracy
could be different. This fact also suits to the MaxSAT-BDD
with different biases for the “unknown” nodes. In this ex-
periment, we consider three different biases: assigning for
each unknown node the majority class of its branch (de-
noted as MaxSAT BDD-P), merging compatible subtrees
(MaxSAT BDD-C), and the class decided by the MaxSAT
solver (MaxSAT BDD-S).

The left scatter plot in Figure 5 presents the comparison of
the average training accuracy between OODG and MaxSAT-
BDD model. In this figure, different datasets are marked with
different colors, and different depths are labelled with points
of different sizes. From the scatter plot, we observe that the
average training accuracy of both approaches increase with
the increase of depth. Overall, the MaxSAT-BDD model per-
forms better than the heuristic OODG in training accuracy.

The middle boxplots of Figure 5 show the average test-
ing accuracy of MaxSAT-BDD with different biases, ODT,
and OODG using different depths averaged over all datasets.
The white line and green triangle of each box indicate the
median and the average value, respectively. Several obser-
vations from the boxplots are presented as follows. At first,
for each bias, increasing the depth could improve the predic-
tion performance. However, compared to ODT and OODG,

all biases chosen for MaxSAT-BDD get less improvements
with increasing depths. Next, there are slight differences for
different biases of MaxSAT-BDD, indicating that it is quite
robust. Then, generally, MaxSAT-BDD gets better predic-
tion performance than ODT and OODG, in particular when
depths are small. We noticed also that when the depth is 2,
all datasets (except one), MaxSAT-BDD reports optimality.

Comparison with an Exact Decision Tree Approach

The purpose of this experiment is to compare our proposi-
tion with the exact method for learning decision trees us-
ing the same solving approach (MaxSAT). For MaxSAT-
BDD, we consider only the bias of merging compatible sub-
trees (MaxSAT BDD-C) since no substantial difference was
observed. We consider different values for depth: H ∈
{2, 3, 4, 5, 6}. For MaxSAT-BDD, the depth also corresponds
to the number of selected features, whereas for MaxSAT-DT
the depth chosen here indicate maximum depth of the BDD.

Table 3 presents the results of evaluation. In the column
“Dataset”, the dataset size (left) and the number of binary
feature (right) are shown under the name. The column “Size”
and “E S” indicate the number of nodes of model and the
encoding size (number of literals in 100 thousands). The best
values are marked in bold.

The results in Table 3 show that the MaxSAT-BDD is com-
petitive to MaxSAT-DT in terms of prediction quality. In
most cases, the training and testing accuracy of these two
approaches are close. However, the size of the models are
always smaller with MaxSAT-BDD. The difference grows
bigger when the depth increases. The reduction in model
size provides better intrepretability. Moreover, sometimes,
compared to the optimal BDDs found via MaxSAT-BDD, the
optimal decision trees found via MaxSAT-DT make useless
splits improving no prediction performance, as we can see
in the case of the datasets “car” and “hypothyroid” with
depth 2. We observe also that MaxSAT-BDD has always a
(far) lighter encoding size than MaxSAT-DT which makes it
easier to handle and to report optimality in limited time.



Datasets H MaxSAT BDD-C MaxSAT-DT
Train Test Size E S Train Test Size E S

anneal
(812/89)

2 82.92 82.19 5 2.41 83.18 82.14 6.84 5.27
3 84 83.55 7 3.72 85.07 84.66 12.68 12.62
4 84.58 83.84 9.4 5.21 86.05 84.78 18.68 31.55
5 85.33 83.92 11.72 7.11 86.44 84.88 23.88 86.53
6 86.26 83.70 14.68 9.95 87.6 85.76 39.16 266.67

audiology
(216/146)

2 94.91 94.92 4 1.06 95.49 94.92 7 3.14
3 96.78 95.84 5.04 1.64 97.82 95.56 11.56 8.88
4 97.73 95.56 6.96 2.26 99.51 94.54 19.08 27.21
5 98.40 94.44 9.88 2.98 99.95 93.98 27 91.53
6 99.17 95.84 14.28 3.96 99.86 94.08 24.12 332.36

australian
(653/124)

2 86.70 85.94 4.72 2.68 86.93 85.33 6.68 5.97
3 87.45 84.81 5.32 4.11 88.09 84.87 13.08 14.61
4 88.45 86.03 7.4 5.68 88.74 85.18 17.48 37.76
5 89.36 85.91 10.44 7.59 89.28 84.75 22.52 107.64
6 90.05 85.7 17.32 10.25 89.49 84.84 27.08 343.36

cancer
(683/89)

2 93.88 93.59 4 2.03 94.91 94.2 7 4.56
3 95.02 93.91 5.84 3.14 96.6 94.73 15 11.09
4 96.06 95.49 7.96 4.39 97.34 94.17 21 28.38
5 95.94 93.74 10.68 5.99 97.99 94.35 29.32 80.09
6 96.84 94.35 14.8 8.38 98.87 93.41 45.72 253.69

car
(1728/21)

2 85.53 85.53 4 1.33 85.53 85.53 6.84 3.2
3 88.40 87.41 5.08 2.2 89.25 87.45 12.68 7.18
4 89.84 88.54 6.84 3.44 91.62 89.68 20.36 16.25
5 91.13 89.91 9.6 5.58 93.78 92.77 29.56 39.0
6 93.51 92.99 13.36 9.71 95.8 95.06 31.96 104.45

hypothyroid
(3247/86)

2 97.84 97.84 4 9.27 97.84 97.84 5.96 18.22
3 98.09 98.04 5.12 14.28 98.14 97.82 9.72 40.3
4 98.27 98.13 6.72 20.01 98.38 98.01 15.40 88.55
5 98.30 98.05 9.28 27.4 98.45 98 20.04 201.63
6 98.37 97.95 13.68 38.54 98.46 97.91 33.16 495.76

mushroom
(8124/112)

2 95.13 95.13 4 29.92 96.9 96.9 7 56.53
3 97.74 97.77 6.8 45.81 99.9 99.9 13.72 122.72
4 98.78 98.74 9 63.51 100 100 19.80 260.39
5 98.63 98.57 11.32 85.37 100 100 23.40 557.11
6 97.28 97.10 14.6 116.59 100 100 27.56 1237.69

tic-tac-toe
(958/27)

2 71.05 68.35 4 0.93 71.1 67.49 5.96 2.23
3 74.91 72.36 6.16 1.5 77.15 73.55 11.48 5.2
4 76.87 74.22 8.84 2.29 82.47 78.68 20.60 12.51
5 81.86 80.31 13.88 3.57 83.08 79.50 28.44 32.83
6 84.82 80.08 24.16 5.95 84.25 80.86 38.12 97.95

Datasets H MaxSAT BDD-C MaxSAT-DT
Train Test Size E S Train Test Size E S

cleveland
(296/95)

2 79.04 72.57 4 0.95 80.76 72.84 7 2.56
3 85.07 83.37 6 1.47 85.68 76.55 12.84 6.89
4 86.32 79.46 7.84 2.06 86.77 76.75 17.80 20.08
5 88.65 78.72 13.08 2.79 87.26 74.45 23.96 64.68
6 90.74 77.29 21.04 3.87 88.58 75.81 28.84 228.48

kr-vs-kp
(3196/73)

2 77.83 77.01 4 7.79 86.92 86.92 7 15.51
3 90.43 90.43 5.28 12.05 93.81 93.79 12.44 34.3
4 94.09 94.09 7.56 17.03 94.32 94.14 17.24 75.38
5 94.34 94.18 9.52 23.64 94.85 94.69 25.40 171.71
6 92.80 92.55 11.52 33.94 93.91 93.69 29.32 422.77

lymph
(148/68)

2 84.46 83.23 4 0.35 86.01 79.27 7 1.23
3 86.76 78.35 5.92 0.56 91.93 80.54 14.68 3.67
4 90.54 82.4 8.72 0.79 94.56 78.46 20.20 11.79
5 93.51 83.6 13.52 1.09 97.09 82.46 27.08 41.31
6 95.88 84.82 17.64 1.57 99.59 80.92 46.60 155.03

tumor
(336/31)

2 82.80 81.6 4 0.37 82.92 81.01 6.76 1.05
3 83.84 80.43 5.3 0.6 86.16 82.97 13.88 2.72
4 85.52 82.49 8.64 0.9 87.89 82.85 20.92 7.64
5 87.51 85.83 13.32 1.38 90.1 79.34 47.80 23.91
6 88.57 81.12 19.84 2.24 90.34 81.31 37.32 83.86

soybean
(630/50)

2 90.48 90.48 4 1.08 91.27 91.27 7 2.56
3 91.39 90.41 6.52 1.7 95.45 94.7 15 6.23
4 93.24 93.21 9.04 2.45 97.25 95.9 22.20 16.02
5 94.31 92.95 11.92 3.53 97.96 95.3 40.60 45.53
6 96.07 95.52 14.88 5.34 98.27 96.03 33.40 145.99

splice-1
(3190/287)

2 84.04 84.04 4 29.66 84.22 83.17 6.92 55.52
3 87.25 86.94 5.44 44.9 87.79 87.37 11.32 123.16
4 88.3 88.04 7.24 60.83 86.52 85.64 16.60 271.79
5 71.99 70.53 10.28 78.39 77.37 76.32 21.88 622.68
6 62.92 61.89 16.28 99.63 60.36 58.95 29.40 1540.61

vote
(435/48)

2 95.68 95.22 3.76 0.72 96.21 95.03 7 1.83
3 96.69 94.57 5.56 1.14 97.39 93.79 13.96 4.66
4 97.40 94.39 8.16 1.65 98.62 94.57 21.16 12.65
5 98.21 94.57 12.4 2.38 99.47 93.84 30.52 38.2
6 98.93 93.98 18.44 3.62 99.62 94.76 35.40 129.24

Table 3: Comparison Results between MaxSAT-BDD and MaxSAT-DT.

Evaluation of a Heuristic MaxSAT-BDD Method
To increase the scalability of our model, we propose a
heuristic version of MaxSAT-BDD using CART (Breiman
et al. 1984), an efficient and scalable heuristic for learning
decision trees. The idea is to run CART as a pre-processing
step in order to choose a subset of (important) features. Then
apply the MaxSAT-BDD approach using only the selected
subset of features.

We first evaluate the prediction quality of this heuristic
method with the original MaxSAT-BDD. The size of the en-
coding is in favor of the heuristic approach as expected,
making large problems treatable. The results of average test-
ing accuracy are shown in the right scatter of Figure 5.
This heuristic approach is clearly very competitive to the
original MaxSAT-BDD in generalization performance. Es-
pecially, for those datasets with more features, the heuris-
tic approach obtains better prediction performance than the
original within the same limited time. As a consequence,
compared to OODG, our heuristic approach performs much

better in terms of prediction quality. We also observed no
significant prediction quality difference with CART.

Conclusion
We propose exact and heuristic methods for optimizing bi-
nary decision diagrams (BDDs) based on the (Maximum)
Boolean Satisfiability framework. Our large experimental
studies show clear benefits of the proposed framework in
terms of prediction quality and interpretability compared to
the existing heuristic approach. Besides, our approach has
competitive prediction performance with far lighter encod-
ing size compared to a similar approach for building decition
trees.

In the future, it would be interesting to extend the pro-
posed approach for multi-valued classification. Moreover, a
deeper investigation of BDDs with other interpretable models
(such as decision rules and decision sets) will be beneficial
since it enhances alternatives for explainable AI.
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