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Context

Context
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subject to capacity and resource constraints.
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Thesis overview

Constraint Programming: Search ⊕ Propagation

⊕ Learning

All these aspects are important and must all be taken into account in
order to design efficient solution methods
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Background

Definition

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet P = (X ,D, C) where

X = [x1, . . . , xn]: finite set of variables

D: a domain for X
C: finite set of constraints

Constraint Satisfaction Problem (CSP): deciding whether a constraint
network has a solution or not

CSP is NP-Hard in general

Complete backtracking algorithms
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Background Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘succeed-first’ [Geelen, 1992]:
Best chances leading to a solution
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Background Propagation

Propagation

Propagation: inferences based on the current state

Constraint ↔ a propagator

Propagators are executed sequentially before taking any decision

The level of pruning ↔ local consistency

Arc Consistency

Let D be a domain, and C be a constraint

C is Arc Consistent (AC) iff for every x in the scope of C , for every
value v ∈ D(x) there exists an assignment w in D satisfying C in
which v is assigned to x
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Background Learning

Learning

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b ↔ (x9 − x4 = 14)∧
b → (x6 ≥ 7)∧
b → (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 30
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 2 10
x8 9 30
x9 13 16
x9 13 16

x10 0 3
x11 15 25
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Background Learning

Learning in CP

Hybrid CP/SAT

Based on the notion of explanation

Conflict Driven Clause Learning (CDCL) [Moskewicz et al., 2001]
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Background Learning

Summary of the thesis

Modern CP-Solvers may not underestimate any of the three aspects:
search, propagation, and learning

Contributions

Search in car-sequencing

Propagation in a class of sequencing problems

Learning in car-sequencing

Revisiting lazy generation

Learning in disjunctive scheduling
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Case Study: The Car-Sequencing Problem

Car-Sequencing

ROADEF’05 challenge [Solnon et al., 2008]

RENAULT
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Case Study: The Car-Sequencing Problem

Problem Definition

A class of vehicles is defined by a set of options

Each class is associated to a demand

Capacity constraints: no subsequence of size q may contain more
than p vehicles requiring a given option

Is there a sequence of cars satisfying both demand and capacity
constraints?
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Case Study: The Car-Sequencing Problem Propagation
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Case Study: The Car-Sequencing Problem Propagation

Propagation via AtMostSeqCard
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Case Study: The Car-Sequencing Problem Propagation

Propagation via AtMostSeqCard

Definition

AtMostSeqCard(p, q, d , [x1, . . . , xn])⇔

n−q∧
i=0

(

q∑
l=1

xi+l ≤ p) ∧ (
n∑

i=1

xi = d)

Example AtMostSeqCard(2, 5, 4, [x1, . . . , x9])

X1 X2 X3 X4 X5 X6 X7 X8 X9
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Case Study: The Car-Sequencing Problem Propagation

AtMostSeqCard as a global constraint?

1 Car sequencing

One AtMostSeqCard per option
Capacity constraints ⊕ demand constraints

2 But also useful in crew-rostering
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Case Study: The Car-Sequencing Problem Propagation

Arc Consistency

AtMostSeqCard(p, q, d , [x1, . . . , xn])⇔

AtMostSeq(p, q, [x1, . . . , xn]) ∧Cardinality(d , [x1, . . . , xn])

AtMostSeq⊕Cardinality is not enough

AtMostSeqCard as a particular case?

cost-Regular: O(2qn) [van Hoeve et al., 2009]

Gen-Sequence: O(n3) [van Hoeve et al., 2009]

Gen-Sequence: O(n2.log(n)) down a branch ⊕ initial compilation
of O(q.n2). [Maher et al., 2008].
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Case Study: The Car-Sequencing Problem Propagation

ac on AtMostSeqCard

Key idea

Enforce ac on AtMostSeq and Cardinality

Complete the filtering based on a greedy rule

An example with AtMostSeqCard(4, 8, 12, [x1, . . . , x22])

. 0 . . . . . . 0 1 0 . . . . . . . . . . 1
AtMostSeq and Cardinality are ac

. 0 . . . . . . 0 1 0 . . . . . . . . . 1
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Case Study: The Car-Sequencing Problem Propagation

Achieving Arc consistency

leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to AtMostSeq.

leftmost count: a linear implementation returning for each i the
maximum cardinality that can be added until i

L: leftmost count from left to right

R: leftmost count from right to left

Achieving ac in linear time

1 ac on AtMostSeq and Cardinality
2 If L[n] < dres : failure

If L[n] = dres , then ∀i :

If L[i ] + R[n − i + 1] ≤ dres , then xi is assigned to 0.
If L[i − 1] + R[n − i ]<dres , then xi is assigned to 1.

Mohamed Siala PhD Defense May 2015 22 / 55



Case Study: The Car-Sequencing Problem Propagation

Achieving Arc consistency

leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to AtMostSeq.

leftmost count: a linear implementation returning for each i the
maximum cardinality that can be added until i

L: leftmost count from left to right

R: leftmost count from right to left

Achieving ac in linear time

1 ac on AtMostSeq and Cardinality
2 If L[n] < dres : failure

If L[n] = dres , then ∀i :

If L[i ] + R[n − i + 1] ≤ dres , then xi is assigned to 0.
If L[i − 1] + R[n − i ]<dres , then xi is assigned to 1.

Mohamed Siala PhD Defense May 2015 22 / 55



Case Study: The Car-Sequencing Problem Propagation

Example

AtMostSeqCard(4, 8, 12)

. 0 . . . . . . 0 1 0 . . . . . . . . . . 1

−→w [i ] 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1

L[i ] 0 1 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10

←−w [i ] 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1

R[i ] 10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0

L[i ] + R[n − i + 1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10

L[i − 1] + R[n − i ] 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10

ac 1 0 . . . . 0 0 0 1 0 1 1 1 0 0 0 . . 1 1 1
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Case Study: The Car-Sequencing Problem Propagation

Experimental Results

Variables

Class variables: n integer variables {x1, . . . , xn}
Option variables: nm Boolean variables {y 1

1 , . . . , y
m
n }

Constraints

1 Demand constraints: ∀c ∈ {1..k}, |{i | xi = c}| = dclass
c : Global

Cardinality Constraint.
2 Capacity constraints:

1 A naive decomposition: decomposition
2 Global Sequencing Constraint: gsc [Régin and Puget, 1997]
3 AtMostSeqCard: amsc
4 Combine AtMostSeqCard and Gsc: gsc⊕amsc

3 Channeling : between option and class variables
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Case Study: The Car-Sequencing Problem Propagation

Experimental results: Car-Sequencing

set1 (70× 42× 5) set2 (4× 42× 5)
#sol avg bts max bts time #sol avg bts max bts time

decomposition 8480 231.2K 25.0M 13.93 95 1.4M 15.3M 76.60
Gsc 11218 1.7K 2.3M 3.60 325 131.7K 1.5M 110.99

AtMostSeqCard 10702 39.1K 13.8M 4.43 360 690.8K 10.2M 72.00
gsc⊕amsc 11243 1.2K 1.1M 3.43 339 118.4K 1.0M 106.53

set3 (5× 42× 5) set4 (7× 42× 5)
#sol avg bts max bts time #sol avg bts max bts time

decomposition 0 - - > 1200 64 543.3K 13.7M 43.81
Gsc 31 55.3K 218.5K 276.06 140 25.2K 321.9K 56.61

AtMostSeqCard 16 40.3K 83.4K 8.62 153 201.4K 3.2M 33.56
gsc⊕amsc 32 57.7K 244.7K 285.43 147 23.8K 371.0K 66.45

Best Models: AtMostSeqCard and AtMostSeqCard⊕Gsc

Gsc saves more backtracks than AtMostSeqCard but extremely
slow

[van Hoeve et al., 2009] 65.2% while gsc⊕amsc 96.20%
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Best Models: AtMostSeqCard and AtMostSeqCard⊕Gsc

Gsc saves more backtracks than AtMostSeqCard but extremely
slow

[van Hoeve et al., 2009] 65.2% while gsc⊕amsc 96.20%
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Case Study: The Car-Sequencing Problem Propagation

Extensions for AtMostSeqCard

MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d , [x1, . . . , xn])⇔

m∧
k=1

n−qk∧
i=0

(

qk∑
l=1

xi+l ≤ pk ) ∧ (
n∑

i=1

xi = d)

The decomposition into m AtMostSeqCard is hindering
propagation

The filtering for AtMostSeqCard can be adapted to achieve ac in
O(m × n)

MultiAtMostSeqCard outperforms the other models in
crew-rostering

Mohamed Siala PhD Defense May 2015 26 / 55



Case Study: The Car-Sequencing Problem Propagation

Extensions for AtMostSeqCard

MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d , [x1, . . . , xn])⇔

m∧
k=1

n−qk∧
i=0

(

qk∑
l=1

xi+l ≤ pk ) ∧ (
n∑

i=1

xi = d)

The decomposition into m AtMostSeqCard is hindering
propagation

The filtering for AtMostSeqCard can be adapted to achieve ac in
O(m × n)

MultiAtMostSeqCard outperforms the other models in
crew-rostering

Mohamed Siala PhD Defense May 2015 26 / 55



Case Study: The Car-Sequencing Problem Propagation

Extensions for AtMostSeqCard

MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d , [x1, . . . , xn])⇔

m∧
k=1

n−qk∧
i=0

(

qk∑
l=1

xi+l ≤ pk ) ∧ (
n∑

i=1

xi = d)

The decomposition into m AtMostSeqCard is hindering
propagation

The filtering for AtMostSeqCard can be adapted to achieve ac in
O(m × n)

MultiAtMostSeqCard outperforms the other models in
crew-rostering

Mohamed Siala PhD Defense May 2015 26 / 55



Case Study: The Car-Sequencing Problem Propagation

Extensions for AtMostSeqCard

MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d , [x1, . . . , xn])⇔

m∧
k=1

n−qk∧
i=0

(

qk∑
l=1

xi+l ≤ pk ) ∧ (
n∑

i=1

xi = d)

The decomposition into m AtMostSeqCard is hindering
propagation

The filtering for AtMostSeqCard can be adapted to achieve ac in
O(m × n)

MultiAtMostSeqCard outperforms the other models in
crew-rostering

Mohamed Siala PhD Defense May 2015 26 / 55



Case Study: The Car-Sequencing Problem Propagation

Extensions for AtMostSeqCard

MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d , [x1, . . . , xn])⇔

m∧
k=1

n−qk∧
i=0

(

qk∑
l=1

xi+l ≤ pk ) ∧ (
n∑

i=1

xi = d)

The decomposition into m AtMostSeqCard is hindering
propagation

The filtering for AtMostSeqCard can be adapted to achieve ac in
O(m × n)

MultiAtMostSeqCard outperforms the other models in
crew-rostering

Mohamed Siala PhD Defense May 2015 26 / 55



Case Study: The Car-Sequencing Problem Propagation

Publications

[Honorable mention] An optimal arc consistency algorithm for a chain
of atmost constraints with cardinality
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. In
Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada,
October 8-12, 2012

An optimal arc consistency algorithm for a particular case of sequence
constraint
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.
Constraints, 19(1):30–56, 2014
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Case Study: The Car-Sequencing Problem Search

Outline

1 Context

2 Background

3 Case Study: The Car-Sequencing Problem
Propagation
Search
Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives
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Case Study: The Car-Sequencing Problem Search

Related work regarding the search strategy

[Smith, 1996]: lex exploration, branching on class variables,

evaluation based on: max option, q/p, usage rate d .q/p
n .

[Régin and Puget, 1997]: middle to sides exploration, branching on
option variables, evaluation based on the slack.

[Gottlieb et al., 2003]: static vs. dynamic, two ways for aggregating
the evaluation (lex,sum)

Motivation

Can we combine these heuristics in one structure?
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[Régin and Puget, 1997]: middle to sides exploration, branching on
option variables, evaluation based on the slack.

[Gottlieb et al., 2003]: static vs. dynamic, two ways for aggregating
the evaluation (lex,sum)

Motivation

Can we combine these heuristics in one structure?

Mohamed Siala PhD Defense May 2015 29 / 55



Case Study: The Car-Sequencing Problem Search

Related work regarding the search strategy

[Smith, 1996]: lex exploration, branching on class variables,

evaluation based on: max option, q/p, usage rate d .q/p
n .
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Case Study: The Car-Sequencing Problem Search

New Classification

Branching: class, option.

Exploration: lex , middle.

Selection:
1 capacity pj/qj

2 demand dopt
j

3 load δj = dopt
j .

qj

pj

4 slack σj = n − (nj − δj )
5 usage rate ρj = δj/nj

Aggregation: ≤∑,≤Euc ,≤lex .

Overall 42 heuristics

〈{class, option}, {lex ,middle}, {q/p, dopt , δ, n−σ, ρ, 1}, {≤∑,≤Euc ,≤lex}〉
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Case Study: The Car-Sequencing Problem Search

Experiments

What is the best configuration?

What are the important criteria?

Summary
Many good heuristics raise as untested combinations

Branching and Selection are the most crucial criteria

The most robust heuristics:
〈class, {lex ,middle}, δ, {≤∑,≤Euc ,≤lex}〉
Search is as important as propagation based on two metrics
confidence and significance
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Case Study: The Car-Sequencing Problem Search

Publication

A study of constraint programming heuristics for the car-sequencing
problem.
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Engineering
Applications of Artificial Intelligence, 38(0):34 – 44, 2015
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Case Study: The Car-Sequencing Problem Learning

Outline

1 Context

2 Background

3 Case Study: The Car-Sequencing Problem
Propagation
Search
Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives
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Case Study: The Car-Sequencing Problem Learning

Hybrid CP/SAT Models

Models based on AtMostSeqCard

We have to explain AtMostSeqCard

Explaining AtMostSeqCard?

Explain AtMostSeq and Cardinality

Explaining the extra filtering: consider the naive explanation, then try
to reduce it.
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Case Study: The Car-Sequencing Problem Learning

Explaining failure: key idea

leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to AtMostSeq.

max : a vector containing for each i the maximum cardinality in w of
all subsequences involving i

Observations

Let S : 1 1 0 0 . subject to AtMost(2/5)
→leftmost on S gives 1 1 0 0 0
Consider the sequence S0: 1 1 . 0 .
→leftmost on S0 gives 1 1 0 0 0

Always true when {Jxi = 0K | max(i) = p}
Consider the sequence S2: . 1 0 0 .
leftmost on S2 gives 1 1 0 0 0

Always true when {Jxi = 1K | max(i) 6= p}
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Case Study: The Car-Sequencing Problem Learning

Reduced Explanations

A weaker domain D̂ defined as follows:

D̂(xi ) = {0, 1} if D(xi ) = {0} ∧max(i) = p

D̂(xi ) = {0, 1} if D(xi ) = {1} ∧max(i) 6= p

D̂(xi ) = D(xi ) otherwise

Theorem

If a failure is raised because L[n] < dres , then the set of assignments in D̂
is a valid nogood.

Time Complexity

O(n) since we call leftmost count once to built max
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Case Study: The Car-Sequencing Problem Learning

Example

D : 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 . . . 1

w 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1

Extra filtering → Failure

max 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2

D̂: 1 1 . . . . . . 1 1 . . . . 0 0 0 0 . 0 0 . . . 1
w 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1

Extra filtering → Failure

Size: 22 with naive explanation and 11 with reduced explanation

Note: not minimal

Mohamed Siala PhD Defense May 2015 37 / 55
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Case Study: The Car-Sequencing Problem Learning

Experimental Results

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat∗ (28× 5)

#suc avg fails time #suc avg fails time #suc avg fails time

CNFA 370 2073 1.71 28 337194 282.35 85 249301 105.07
CNFS 370 1114 0.87 31 60956 56.49 65 220658 197.03

CNFA+S 370 612 0.91 34 32711 36.52 77 190915 128.09
hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78

hybrid (VSIDS/Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot/VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CP 370 43 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743 236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

Finding solutions quickly: Propagation is very important to find
solutions quickly when they exist.

For proving unsatisfiability: Clause learning is by far the most critical
factor.
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Case Study: The Car-Sequencing Problem Learning

Publication

SAT and Hybrid Models of the Car-Sequencing problem
Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger,
Mohamed Siala, and Toby Walsh. In Integration of AI and OR Techniques
in Constraint Programming - 11th International Conference, CPAIOR
2014, Cork, Ireland, May 19-23, 2014
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Learning in Disjunctive Scheduling

Context

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource

Constraint.

Unary Resource Constraint [Grimes and Hebrard, 2015]

Decomposition using the following Disjunctive constraints:

δkij =

{
0 ⇔ tik + pik ≤ tjk

1 ⇔ tjk + pjk ≤ tik
(1)

Our Contributions

Alternative lazy generation approach

Novel conflict analysis scheme
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Learning in Disjunctive Scheduling

Revisiting Lazy Generation

Standard Lazy Encoding

Generate atoms lazily when learning new clauses.

Generate related domain clauses.

There is a redundancy issue

Example

Atoms clauses

∅ ∅
Jx ≤ 57K ∅
Jx ≤ 317K
Jx ≤ 203K ∧
Jx ≤ 84K (Jx ≥ 84K ∨ Jx ≤ 203K) ∧ ( Jx ≥ 57K ∨ Jx ≤ 84K)
Jx ≤ 250K (Jx ≥ 250K ∨ Jx ≤ 317K) ∧ ( Jx ≥ 203K ∨ Jx ≤ 250K)

O(k) redundant clauses
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Learning in Disjunctive Scheduling

Avoiding the redundancy via DomainFaithfulness

Key Idea

Use a single constraint responsible for the consistency of the domain.

Whenever an atom is generated, we update the internal structure of
the constraint

Definition

DomainFaithfulness(x , [b1 . . . bn], [v1, . . . , vn]) : ∀i , bi ↔ x ≤ vi

Arc consistency

Can be enforced in constant amortized time complexity (O(1)) down a
branch of the search tree
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Learning in Disjunctive Scheduling

Disjunctive-based Learning

Branch on the reified Boolean variables

→ There exists an explanation for every bound literal Jx ≤ uK

Disjunctive-based Learning

Two phases:

1 First UIP cut with a reified Boolean variable

2 Apply resolution for every bound literal until having a nogood with
only reified Boolean variables

⊕ No domain encoding

⊕ Scheduling horizon does not manner in size

	 Language of literals is restricted compared to standard approaches
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Learning in Disjunctive Scheduling

Experimental results

Protocol

Mistral-Hybrid: new hybrid solver with

backward explanation
semantic reductions
lazy generation
Disjunctive-based learning

https://github.com/siala/Hybrid-Mistral

Job Shop and Open Shop benchmarks
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Learning in Disjunctive Scheduling

Experimental results: Job Shop

Lawrence results

Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, disj)
T %O T %O T %O T %O T %O

471.97 88.75 396.20 92 602.51 88 410.55 90.50 489.25 89

Taillard results

Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy)
M Size M Nodes/S M Nodes/S M Nodes/S M Nodes/S

%O T %O T %O T %O T %O T
t01-10 90 616.22 8871.32 90 477.79 6814.73 87 999.17 1213.57 90 574.87 4869.45 85 1115.49 1261.70

PRD PRD PRD PRD PRD
t11-20 3.2381 6509.44 3.0350 3970.85 1.8937 520.62 0.4808 2715.29 0.1169 539.79
t21-30 0.7302 3935.87 0.2769 2424.16 0.4756 413.90 0.2485 1752.05 0.1557 437.04
t31-40 1.7227 4503.78 0.7109 2598.25 0.3043 555.36 0.6016 1517.04 0.4103 566.18
t41-50 2.2161 2570.10 0.4798 1530.42 0.3036 413.48 0.5420 994.61 0.6163 443.63
t51-60 2.0798 1952.51 2.2847 2602.31 2.7990 562.71 0.1621 1131 0.2419 698.37
t61-70 3.2381 1349.73 3.0350 2183.79 1.8937 522.25 0.4808 920.55 0.1169 584.14

PRD: percentage relative deviation
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Learning in Disjunctive Scheduling

Experimental results: Summary

‘Light’ CP models are extremely efficient with small sized instances

These models benefit essentially from the fast exploration speed

The impact of clause learning is more and more glaring when the size
of the instance grows

Disjunctive-based learning outperforms the other models on
medium sized instances
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Learning in Disjunctive Scheduling

Experimental results: lower bounds experiments

Open instances from Taillard benchmark

7 new bounds found with Disjunctive-based and VSIDS

tai13 tai21 tai23 tai25 tai26 tai29 tai30
new old new old new old new old new old new old new old
1305 1282 1613 1573 1514 1474 1543 1518 1561 1558 1573 1525 1508 1485

[Viĺım et al., 2015]

IBM CP-Optimizer studio

8h20min per instance

Parallelization: Double threading phase

Start search with best known bounds as an additional information.
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tai13 tai21 tai23 tai25 tai26 tai29 tai30
new old new old new old new old new old new old new old
1305 1282 1613 1573 1514 1474 1543 1518 1561 1558 1573 1525 1508 1485

1342 1642 1518 1558 1591 1573 1519

[Viĺım et al., 2015]

IBM CP-Optimizer studio

8h20min per instance
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Conclusions & Perspectives

Summary

Contributions to each of the three aspects of constraint programming
that are ‘search’, ‘propagation’ and ‘learning’ for efficiently solving
sequencing and scheduling problems.

Case study: car-sequencing

Clause Learning in CP

Modern constraint programming solvers may not underestimate any of
these three aspects
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Conclusions & Perspectives

Future Research

Car-Sequencing:

Application to ‘real’ industrial situations [Solnon et al., 2008].

Propagation via AtMostSeqCard:

Incrementality?
More extensions?

Explanation for AtMostSeqCard:

Minimal explanations?
Applications to other sequencing problems.

Learning in Scheduling Problems:

Applications to other scheduling problems.
Learning with global constraints.
Hand-crafted learning.
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Conclusions & Perspectives

Thank you.
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