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Context

Sequencing and Scheduling: the organization in time of of operations
subject to capacity and resource constraints.
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Thesis overview

Constraint Programming: Search @ Propagation & Learning

All these aspects are important and must all be taken into account in
order to design efficient solution methods
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Background

Definition
A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet P = (X, D,C) where
© X =|[xi1,...,xp]: finite set of variables
e D: a domain for X

@ C: finite set of constraints

Constraint Satisfaction Problem (CSP): deciding whether a constraint
network has a solution or not

CSP is NP-Hard in general

Complete backtracking algorithms )
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Background [ESIEIEEN]

Search

@ Search: decisions to explore the search tree
@ Search in CP= variable ordering + value ordering

@ Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘succeed-first’ [Geelen, 1992]:
Best chances leading to a solution
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Propagation
Propagation

Propagation: inferences based on the current state
Constraint <+ a propagator

Propagators are executed sequentially before taking any decision

The level of pruning < local consistency
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Propagation
Propagation

Propagation: inferences based on the current state
Constraint <+ a propagator

Propagators are executed sequentially before taking any decision

The level of pruning < local consistency

Arc Consistency
@ Let D be a domain, and C be a constraint

e C is Arc Consistent (AC) iff for every x in the scope of C, for every
value v € D(x) there exists an assignment w in D satisfying C in
which v is assigned to x
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T
Learning in CP

e Hybrid CP/SAT
@ Based on the notion of explanation
e Conflict Driven Clause Learning (CDCL) [Moskewicz et al., 2001]
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Background Learning

Summary of the thesis

Modern CP-Solvers may not underestimate any of the three aspects:
search, propagation, and learning

Contributions
@ Search in car-sequencing
@ Propagation in a class of sequencing problems

Learning in car-sequencing

°
@ Revisiting lazy generation
°

Learning in disjunctive scheduling
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Case Study: The Car-Sequencing Problem
Outline

© Case Study: The Car-Sequencing Problem
@ Propagation
@ Search
@ Learning
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Case Study: The Car-Sequencing Problem

Car-Sequencing

o ROADEF'05 challenge [Solnon et al., 2008]
o RENAULT
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Conditioning

‘AtMost(2,3]

@ A class of vehicles is defined by a set of options

@ Each class is associated to a demand

@ Capacity constraints: no subsequence of size ¢ may contain more
than p vehicles requiring a given option

@ Is there a sequence of cars satisfying both demand and capacity
constraints?
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Case Study: The Car-Sequencing Problem Propagation
Outline

© Case Study: The Car-Sequencing Problem
@ Propagation
@ Search
@ Learning
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Definition
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Arc Consistency
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i aiio)
Arc Consistency

ATMOSTSEQCARD(p, q,d, [x1, ..., X]) &

ATMOSTSEQ(p, q, [x1, - - -, Xn]) A CARDINALITY(d, [x1, . .., Xn])

o ATMOSTSEQ ¢ CARDINALITY is not enough J

ATMOSTSEQCARD as a particular case?
@ COST-REGULAR: O(29n) [van Hoeve et al., 2009]
o GEN-SEQUENCE: O(n®) [van Hoeve et al., 2009]

o GEN-SEQUENCE: O(n?.log(n)) down a branch & initial compilation
of O(g.n?). [Maher et al., 2008].
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Propagation
AC on ATMOSTSEQCARD

Key idea
@ Enforce AC on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule
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Propagation
AC on ATMOSTSEQCARD

Key idea
@ Enforce AC on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

An example with ATMOSTSEQCARD(4,8,12, [x1, ..., x22])

0L 010.......... 1
ATMOSTSEQ and CARDINALITY are AC
0L o1o0f......... 1
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Propagation
AC on ATMOSTSEQCARD
Key idea

@ Enforce AC on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

I O 010.......... 1
ATMOSTSEQ and CARDINALITY are AC
0L o1off......... 1

10111000010
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Propagation
AC on ATMOSTSEQCARD

Key idea
@ Enforce Ac on ATMOSTSEQ and CARDINALITY
o Complete the filtering based on a greedy rule

L0 010.......... 1
ATMOSTSEQ and CARDINALITY are AC
0L o1off......... 1

10111000010 max added= 4
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Propagation
AC on ATMOSTSEQCARD
Key idea

@ Enforce AC on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

An example with ATMOSTSEQCARD(4, 8,12, [x1, ..., X22])

0L 010.. . ... .1
ATMOSTSEQ and CARDINALITY are AC

S0 o1of. . ... . ... 1
10111000010 max added= 4

1100001111
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Propagation
AC on ATMOSTSEQCARD
Key idea

@ Enforce AC on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

.0 010.. . ... .. .. 1
ATMOSTSEQ and CARDINALITY are AC

S0 oi1off. ... ... .. 1
10111000010 max added= 4

max added5 1100001111
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Case Study: The Car-Sequencing Problem Propagation

AC on ATMOSTSEQCARD
Key idea
@ Enforce Ac on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

An example with ATMOSTSEQCARD(4,8,12, [x1,...,x22])

.0 010.. . ... .1

ATMOSTSEQ and CARDINALITY are AC

S0 o1off. . . .. 1
10111000010 maxadded 4

max added5 11000 0 1111
Maximum possible 9 < residual demand
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Case Study: The Car-Sequencing Problem Propagation

AC on ATMOSTSEQCARD
Key idea
@ Enforce Ac on ATMOSTSEQ and CARDINALITY

@ Complete the filtering based on a greedy rule

An example with ATMOSTSEQCARD(4,8,12, [x1,...,x22])

.0 010. ... .. .1

ATMOSTSEQ and CARDINALITY are AC

S0 o10ff. - . .. 1
10111000010 maxadded 4

max added5 11000 0 1111
Maximum possible 9 < residual demand
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Propagation
Achieving Arc consistency

o leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ leftmost_count: a linear implementation returning for each i the
maximum cardinality that can be added until /

o L: leftmost_count from left to right
@ R: leftmost_count from right to left
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Propagation
Achieving Arc consistency

o leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ leftmost_count: a linear implementation returning for each i the
maximum cardinality that can be added until /
o L: leftmost_count from left to right

@ R: leftmost_count from right to left

Achieving AC in linear time

@ AC on ATMOSTSEQ and CARDINALITY
Q o If L[n] < dyes: failure
o If L[n] = dyes, then Vi:

o If L[i] + R[n — i+ 1] < dres, then x; is assigned to 0.
o If L[i — 1] 4+ R[n — i]<dhes, then x; is assigned to 1.
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Example

ATMOSTSEQCARD(4, 8,12)

o . . . . . . 0xro . . . . . . . . . .1
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Case Study: The Car-Sequencing Problem Propagation

Example

ATMOSTSEQCARD(4, 8,12)
o . . . . . . 0xro . . . . . . . . . .1

wli] 1011100007101110007101171
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Case Study: The Car-Sequencing Problem Propagation

Example

ATMOSTSEQCARD(4, 8,12)

0 . . . . . .0 10 . . . . . . ... .1
wli] 1011100007101110007101171
L[i] 01 1 2 3 4 4 4 4 4 4 45 6 7 7 7 7 8 8 91010
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figzasake)
Example

ATMOSTSEQCARD(4, 8,12)

0 . . . . . .0 10 . . . . . . ... .1
wli] 1011100007101110007101171
L[i] 01 1 2 3 4 4 4 4 4 4 45 6 7 7 7 7 8 8 91010
Wli] 1001110001011 10000711171
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Case Study: The Car-Sequencing Problem Propagation

Example

ATMOSTSEQCARD(4, 8,12)

0
Wil 1011100
L[i] 01 1 2 3 4 4 4
Wli] 1001110
R[i] 109 9 9 8 7 6

9
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Case Study: The Car-Sequencing Problem Propagation

Example

ATMOSTSEQCARD(4, 8,12)

0 010 1
wli] 1011100007101110007101171
L[i] 01 1 2 3 4 4 4 4 4 4 45 6 7 7 7 7 8 8 91010
Wil 100111000101 11000011171
R[i] 109 9 987 66 66 6 65 4 333332100
L[]+ R[n—i+1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10
Lli—1]+R[p—i 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10
v
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Case Study: The Car-Sequencing Problem Propagation

Example

ATMOSTSEQCARD(4, 8,12)

0 010 1
wli] 1011100007101110007101171
L[i] 1 1 2 3 4 4 4 4 4 4 45 6 7 7 77 8 8 91010
Wil 100111000101 11000011171
R[i] 109 9 987 66 66 6 65 4 333332100
L[]+ R[n—i+1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10
Lli—1]+R[p—i 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10
AC 10 00010111000 11 1 )
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Case Study: The Car-Sequencing Problem Propagation

Experimental Results

Variables
o Class variables: n integer variables {xi,...,x,}
e Option variables: nm Boolean variables {y{,...,y™}

Constraints

@ Demand constraints: Vc € {1..k}, ‘{/ | xi = c}| = d<: Global
Cardinality Constraint.
@ C(apacity constraints:

@ A naive decomposition: DECOMPOSITION

@ Global Sequencing Constraint: Gsc [Régin and Puget, 1997]
©® ATMOSTSEQCARD: AMSC

@ Combine ATMOSTSEQCARD and GSC: GSCHAMSC

© Channeling: between option and class variables
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Case Study: The Car-Sequencing Problem Propagation

Experimental results: Car-Sequencing

setl (70 x 42 X 5) set2 (4 x 42 X 5)
#£sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 8480(231.2K| 25.0M|13.93|| 95| 1.4M| 15.3M| 76.60
Gsc 11218| 1.7K 2.3M| 3.60(| 325|131.7K 1.5M|110.99
ATMOSTSEQCARD||10702| 39.1K| 13.8M| 4.43|| 360|690.8K| 10.2M| 72.00
GSCPAMSC 11243 1.2K 1.1M| 3.43|| 339|118.4K 1.0M|106.53
set3 (5 x 42 x 5) set4 (7 x 42 x 5)
#sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 0 - -|> 1200|| 64|543.3K| 13.7M|43.81
Gsc 31| 55.3K| 218.5K| 276.06|| 140| 25.2K| 321.9K|56.61
ATMOSTSEQCARD|| 16| 40.3K| 83.4K| 8.62|| 153|201.4K| 3.2M|33.56
GSCHAMSC 32| 57.7K| 244.7K| 285.43|| 147| 23.8K| 371.0K|66.45
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Experimental results: Car-Sequencing

setl (70 x 42 X 5) set2 (4 x 42 X 5)
#£sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 8480(231.2K| 25.0M|13.93|| 95| 1.4M| 15.3M| 76.60
Gsc 11218| 1.7K 2.3M| 3.60(| 325|131.7K 1.5M|110.99
ATMOSTSEQCARD||10702| 39.1K| 13.8M| 4.43|| 360|690.8K| 10.2M| 72.00
GSCPAMSC 11243 1.2K 1.1M| 3.43|| 339|118.4K 1.0M|106.53
set3 (5 x 42 x 5) set4 (7 x 42 x 5)
#sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 0 - -|> 1200|| 64|543.3K| 13.7M|43.81
Gsc 31| 55.3K| 218.5K| 276.06|| 140| 25.2K| 321.9K|56.61
ATMOSTSEQCARD|| 16| 40.3K| 83.4K| 8.62|| 153|201.4K| 3.2M|33.56
GSCHAMSC 32| 57.7K| 244.7K| 285.43|| 147| 23.8K| 371.0K|66.45

@ Best Models: ATMOSTSEQCARD and ATMOSTSEQCARD & GscC
@ GscC saves more backtracks than ATMOSTSEQCARD but extremely

slow
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Case Study: The Car-Sequencing Problem Propagation

Experimental results: Car-Sequencing

setl (70 x 42 X 5) set2 (4 x 42 X 5)
#£sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 8480(231.2K| 25.0M|13.93|| 95| 1.4M| 15.3M| 76.60
Gsc 11218| 1.7K 2.3M| 3.60(| 325|131.7K 1.5M|110.99
ATMOSTSEQCARD||10702| 39.1K| 13.8M| 4.43|| 360|690.8K| 10.2M| 72.00
GSCPAMSC 11243 1.2K 1.1M| 3.43|| 339|118.4K 1.0M|106.53
set3 (5 x 42 x 5) set4 (7 x 42 x 5)
#sol|avg bts|max bts| time||#sol|avg bts|max bts| time
DECOMPOSITION 0 - -|> 1200|| 64|543.3K| 13.7M|43.81
Gsc 31| 55.3K| 218.5K| 276.06|| 140| 25.2K| 321.9K|56.61
ATMOSTSEQCARD|| 16| 40.3K| 83.4K| 8.62|| 153|201.4K| 3.2M|33.56
GSCHAMSC 32| 57.7K| 244.7K| 285.43|| 147| 23.8K| 371.0K|66.45

@ Best Models: ATMOSTSEQCARD and ATMOSTSEQCARD & GscC
@ GscC saves more backtracks than ATMOSTSEQCARD but extremely

slow

@ [van Hoeve et al., 2009] 65.2% while cscdaMsc 96.20%
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Propagation
Extensions for ATMOSTSEQCARD

MULTIATMOSTSEQCARD(P1, -y Pms Q1 -y Gms d, [X1, - - -y Xn]) <&

@ The decomposition into m ATMOSTSEQCARD is hindering
propagation
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Propagation
Extensions for ATMOSTSEQCARD

MULTIATMOSTSEQCARD(P1, -y Pms Q1 -y Gms d, [X1, - - -y Xn]) <&

m N—qk qgk n
A N OQ xiw<p) A xi=d)
k=1 i=0 [I=1 i=1

@ The decomposition into m ATMOSTSEQCARD is hindering
propagation

@ The filtering for ATMOSTSEQCARD can be adapted to achieve AC in
O(m x n)
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Propagation
Extensions for ATMOSTSEQCARD

MULTIATMOSTSEQCARD(P1, -y Pms Q1 -y Gms d, [X1, - - -y Xn]) <&

@ The decomposition into m ATMOSTSEQCARD is hindering
propagation

@ The filtering for ATMOSTSEQCARD can be adapted to achieve AC in
O(m x n)

o MULTIATMOSTSEQCARD outperforms the other models in
crew-rostering
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Case Study: The Car-Sequencing Problem Propagation

Publications

@ [Honorable mention] An optimal arc consistency algorithm for a chain
of atmost constraints with cardinality
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. In
Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada,
October 8-12, 2012

@ An optimal arc consistency algorithm for a particular case of sequence
constraint
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.
Constraints, 19(1):30-56, 2014
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Case Study: The Car-Sequencing Problem Search
Outline

© Case Study: The Car-Sequencing Problem
@ Propagation
@ Search
@ Learning

Mohamed Siala PhD Defense May 2015 28 / 55



ezl
Related work regarding the search strategy

Mohamed Siala PhD Defense May 2015 29 / 55



ezl
Related work regarding the search strategy

@ [Smith, 1996]: lex exploration, branching on class variables,
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ezl
Related work regarding the search strategy

@ [Smith, 1996]: lex exploration, branching on class variables,

evaluation based on: max option, q/p, usage rate q/p

o [Régin and Puget, 1997]: middle to sides exploratlon, branching on
option variables, evaluation based on the slack.

o [Gottlieb et al., 2003]: static vs. dynamic, two ways for aggregating
the evaluation (lex,sum)

Motivation

Can we combine these heuristics in one structure?
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Case Study: The Car-Sequencing Problem Search

New Classification

@ Branching: class, option

@ Exploration: lex, middle.
@ Selection:
capacity p;/q;
demand djo"t
4Pt g
load &; = d o
slack o; = n— (nj — 9))
usage rate p; = 6;/n;

00000
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Search
New Classification

@ Branching: class, option.
@ Exploration: lex, middle.
@ Selection:

@ capacity p;/q;
@ demand djopt
© load §; = dfpt.%j,
Q slack o; = n— (n; — §;)
© usage rate p; = d;/n;
o Aggregation: <s~, <fyc, <jex-
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Case Study: The Car-Sequencing Problem Search

New Classification

@ Branching: class, option.

@ Exploration: lex, middle.
@ Selection:

@ capacity p;/q;
@ demand djopt
© load §; = dfpt.%
Q slack o; = n— (n; — §;)
© usage rate p; = d;/n;
o Aggregation: <s~, <fyc, <jex-

Overall 42 heuristics
({class, option}, {lex, middle}, {q/p, dP*,8,n—0c, p, 1}, {<s~, <Euc, <lex})

v
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Summary
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Case Study: The Car-Sequencing Problem Search

Experiments

@ What is the best configuration?

@ What are the important criteria?

Summary
@ Many good heuristics raise as untested combinations

@ Branching and Selection are the most crucial criteria

@ The most robust heuristics:
(class, {lex, middle}, 5, {<s~, <Euc, <iex})
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Case Study: The Car-Sequencing Problem Search

Experiments

@ What is the best configuration?
@ What are the important criteria?

Summary
@ Many good heuristics raise as untested combinations

@ Branching and Selection are the most crucial criteria

@ The most robust heuristics:
(class, {lex, middle}, 5, {<s~, <Euc, <iex})

@ Search is as important as propagation based on two metrics
confidence and significance

Mohamed Siala PhD Defense May 2015 31 /55



Case Study: The Car-Sequencing Problem Search
Publication

A study of constraint programming heuristics for the car-sequencing
problem.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Engineering
Applications of Artificial Intelligence, 38(0):34 — 44, 2015
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Case Study: The Car-Sequencing Problem Learning
Outline

© Case Study: The Car-Sequencing Problem
@ Propagation
@ Search
@ Learning
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@ Models based on ATMOSTSEQCARD
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Learning
Hybrid CP/SAT Models

@ Models based on ATMOSTSEQCARD
@ We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?
@ Explain ATMOSTSEQ and CARDINALITY

o Explaining the extra filtering: consider the naive explanation, then try
to reduce it.
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T
Explaining failure: key idea

@ leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ max: a vector containing for each i the maximum cardinality in w of
all subsequences involving i
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Explaining failure: key idea

@ leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ max: a vector containing for each i the maximum cardinality in w of
all subsequences involving i

Observations

Let S: 1100 . subject to ATMoST(2/5)
—leftmost on S gives 1 1 000
Consider the sequence S5p: 11.0.
—leftmost on Sy gives 1 1 000
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all subsequences involving i

Observations

Let S: 1100 . subject to ATMoST(2/5)
—leftmost on S gives 1 1 000
Consider the sequence S5p: 11.0.
—leftmost on Sy gives 1 1 000

Always true when {[x; = 0] | max(i) = p}
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T
Explaining failure: key idea

@ leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ max: a vector containing for each i the maximum cardinality in w of
all subsequences involving i

Observations
Let S: 1100 . subject to ATMoST(2/5)
—leftmost on S gives 1 1 000
Consider the sequence S5p: 11.0.
—leftmost on Sy gives 1 1 000
Always true when {[x; = 0] | max(i) = p}

Consider the sequence S»: . 100 .
leftmost on Sy gives 1 1 000
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T
Explaining failure: key idea

@ leftmost: a greedy rule computing an assignment w of maximum
cardinality with respect to ATMOSTSEQ.

@ max: a vector containing for each i the maximum cardinality in w of
all subsequences involving i

Observations

Let S: 1100 . subject to ATMoST(2/5)
—leftmost on S gives 1 1 000
Consider the sequence S5p: 11.0.
—leftmost on Sy gives 1 1 000

Always true when {[x; = 0] | max(i) = p}

Consider the sequence S»: . 100 .
leftmost on Sy gives 1 1 000

Always true when {[x; = 1] | max(i) # p}
PhD Defense May 2015 35 /55
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Case Study: The Car-Sequencing Problem Learning

Reduced Explanations

A weaker domain D defined as follows:
D(x;) = {0,1} if D(x;) = {0} A max(i) = p

D(x) = {0,1} if D(x;) = {1} A max(i) # p
D(x;) = D(x;) otherwise
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Case Study: The Car-Sequencing Problem Learning

Reduced Explanations

A weaker domain D defined as follows:

D(x) = {0,1} if D(x;) = {0} A max(i) = p
ZZ(X,-) ={0,1} if D(x;) = {1} A max(i) # p
D(x;) = D(x;) otherwise

Theorem

If a failure is raised because L[n] < des , then the set of assignments in D
is a valid nogood.
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Case Study: The Car-Sequencing Problem Learning

Reduced Explanations

A weaker domain D defined as follows:

D(x) = {0,1} if D(x;) = {0} A max(i) = p
ZZ(X,-) ={0,1} if D(x;) = {1} A max(i) # p
D(x;) = D(x;) otherwise

Theorem

If a failure is raised because L[n] < des , then the set of assignments in D
is a valid nogood.

Time Complexity

O(n) since we call leftmost_count once to built max
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Mohamed Siala PhD Defense May 2015 37 /55



Case Study: The Car-Sequencing Problem Learning

Example

DP: 110000001100010000100 . . .1

Mohamed Siala PhD Defense May 2015 37 /55



Case Study: The Car-Sequencing Problem Learning

Example
D: 11 000000110001 0000100 . o1
w 110000001100010000100 1 001

Extra filtering — Failure
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Case Study: The Car-Sequencing Problem Learning

Example

1

DP: 110000001100010000100 . ..
110000001100010000100 1 001

w

Extra filtering — Failure

max 2 2 2222222222211111111 1 222
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Case Study: The Car-Sequencing Problem Learning

Example
pD: 110000001100010000100 . . .1
w 110000001100010000100 1 001
Extra filtering — Failure
max 2 22 222222222211111111 1 222
D: tTr+*T. . . . . .11. .. .00O00 00 . o1
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Case Study: The Car-Sequencing Problem Learning

Example
pD: 110000001100010000100 . . .1
w 110000001100010000100 1 001
Extra filtering — Failure
max 2 22 222222222211111111 1 222
D11 .. .. .11 0000O0 00 1
w 110000001100010000100 1 001

Extra filtering — Failure
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Case Study: The Car-Sequencing Problem Learning

Example

2

—
—
oo
oo
oo
oo
oo

max 2 2 2 2 2 2 2

=T
=
=

1100000

Size: 22 with naive explanation and 11 with reduced explanation

Mohamed Siala

011000100
011000100

Extra filtering — Failure

222222111
.11 . 00
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1100000

Size: 22 with naive explanation and 11 with reduced explanation

Mohamed Siala

011000100
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Extra filtering — Failure
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Note: not minimal
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Case Study: The Car-Sequencing Problem Learning

Experimental Resul

ts

Method sat[easy] (74 X 5) | sat[hard] (7 X 5) unsat™ (28 X 5)
#suc|avg fails| time||#suc|avg fails| time||#suc|avg fails| time|
CNFp 370 2073| 1.71 28| 337194(282.35 85| 249301(105.07
CNFg 370 1114| 0.87 31| 60956| 56.49 65| 220658/ 197.03
CNFpys 370 612 0091 34| 32711| 36.52 77| 190915|128.09
hybrid (VSIDS) 370 903| 0.23 16| 207211|286.32 35| 177806|224.78
hybrid (VSIDS/Slot)|| 370 739| 0.23 35| 76256 64.52 37| 204858|248.24
hybrid (Slot/VSIDS)|| 370 132| 0.04 34 4568| 2.50 37| 234800|287.61
hybrid (Slot) 370 132| 0.04 35 6304 3.75 23| 174097|299.24
cP 370 43| 0.03 35| 57966| 16.25 0 - -
PBO-clauses 277| 538743|236.94 0 - - 43| 175990(106.92
PBO-cutting planes || 272 2149| 52.62 0 - - 1 5031| 53.38
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T
Experimental Results

sat [easy] (74 x 5)

sat [hard] (7 X 5)

unsat™ (28 X 5)

’ Method #suc|avg fails| time||#suc|avg fails| time||#suc|avg fails| time|
CNFp 370 2073| 1.71 28| 337194(282.35 85| 249301(105.07

CNFg 370 1114| 0.87 31| 60956| 56.49 65| 220658/ 197.03
CNFpys 370 612 0091 34| 32711| 36.52 77| 190915|128.09
hybrid (VSIDS) 370 903| 0.23 16| 207211|286.32 35| 177806|224.78
hybrid (VSIDS/Slot)|| 370 739| 0.23 35| 76256 64.52 37| 204858|248.24
hybrid (Slot/VSIDS)|| 370 132| 0.04 34 4568| 2.50 37| 234800|287.61
hybrid (Slot) 370 132| 0.04 35 6304 3.75 23| 174097|299.24
cP 370 43| 0.03 35| 57966| 16.25 0 - -
PBO-clauses 277| 538743|236.94 0 - - 43| 175990(106.92
PBO-cutting planes || 272 2149| 52.62 0 - - 1 5031| 53.38

e Finding solutions quickly: Propagation is very important to find

solutions quickly when they exist.

@ For proving unsatisfiability: Clause learning is by far the most critical

factor.
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Case Study: The Car-Sequencing Problem Learning
Publication

SAT and Hybrid Models of the Car-Sequencing problem

Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger,
Mohamed Siala, and Toby Walsh. In Integration of Al and OR Techniques
in Constraint Programming - 11th International Conference, CPAIOR
2014, Cork, Ireland, May 19-23, 2014
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@ Learning in Disjunctive Scheduling
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Context

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource
Constraint.
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Learning in Disjunctive Scheduling

Context

Disjunctive Scheduling
A family of scheduling problems having in common the Unary Resource

Constraint. )

Unary Resource Constraint [Grimes and Hebrard, 2015]
@ Decomposition using the following DISJUNCTIVE constraints:

1 & tik+pi <t

. ey
5kU:{ 0 & t/k+P1k = t:lk (1)

Mohamed Siala PhD Defense May 2015 41 /55



Context

Disjunctive Scheduling

A family of scheduling problems having in common the Unary Resource
Constraint.

Unary Resource Constraint [Grimes and Hebrard, 2015]
@ Decomposition using the following DISJUNCTIVE constraints:

0 & tik+pix < ti
Oki { 1 & tix+pix < ti (1)

Our Contributions
o Alternative lazy generation approach

@ Novel conflict analysis scheme
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Revisiting Lazy Generation
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@ Generate atoms lazily when learning new clauses.
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Revisiting Lazy Generation

Standard Lazy Encoding
@ Generate atoms lazily when learning new clauses.
@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
0 0
[x < 57] 0
[x <317] [x > 57] V [x < 317]
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Revisiting Lazy Generation

Standard Lazy Encoding
@ Generate atoms lazily when learning new clauses.
@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
0 0
[x < 57] 0
[x <317] [x > 57] V [x < 317]

[x <203] | ([x>203]V[x<317]) A ([x>57]V[x < 203])
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Learning in Disjunctive Scheduling

Revisiting Lazy Generation

Standard Lazy Encoding
@ Generate atoms lazily when learning new clauses.
@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
0 0
[x < 57] 0
[x <317] [x > 57] V [x < 317]

[x <203] | ([x>203]V[x<317]) A ([x>57]V[x < 203])
[x < 84] ([x > 84] V [x < 203]) A ( [x > 57] V [x < 84])
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Learning in Disjunctive Scheduling

Revisiting Lazy Generation

Standard Lazy Encoding
@ Generate atoms lazily when learning new clauses.
@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
0 0
[x < 57] 0
[x <317] [x > 57] V [x < 317]
[x <203] | ([x >203]V[x<317]) A ([x>57]V[x <203])
[x < 84] ([x > 84] v [x <203]) A ( [x >57] Vv [x < 84])
[x < 250] ([x > 250] V [x < 317]) A ( [x > 203] V [x < 250])

v
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Learning in Disjunctive Scheduling

Revisiting Lazy Generation

Standard Lazy Encoding

@ Generate atoms lazily when learning new clauses.

@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
U] 0
[x < 57] 0
[x < 317] [x > 57] V [x < 317]

[x <203] | ([x=>203]V[x<317])
[x < 84] ([x > 84] v [x <203]) A ( [x >57] Vv [x < 84])
[x < 250] ([x > 250] Vv [x < 317]) A ( [x > 203] V [x < 250])
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Learning in Disjunctive Scheduling

Revisiting Lazy Generation

Standard Lazy Encoding

@ Generate atoms lazily when learning new clauses.

@ Generate related domain clauses.

@ There is a redundancy issue

Example
Atoms ‘ clauses
U] 0
[x < 57] 0
[x < 317] [x > 57] V [x < 317]

[x <203] | ([x=>203]V[x<317])
[x < 84] ([x > 84] v [x <203]) A ( [x >57] Vv [x < 84])
[x < 250] ([x > 250] Vv [x < 317]) A ( [x > 203] V [x < 250])

A ([x =57V [x < 203])

O(k) redundant clauses

v
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@ Whenever an atom is generated, we update the internal structure of
the constraint
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Avoiding the redundancy via DOMAINFAITHFULNESS

Key ldea
@ Use a single constraint responsible for the consistency of the domain.

@ Whenever an atom is generated, we update the internal structure of
the constraint

Definition

DOMAINFAITHFULNESS(X, [b1 ... bp], [v1, ..., va]) : Vi, bj > x < v;
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Avoiding the redundancy via DOMAINFAITHFULNESS

Key ldea
@ Use a single constraint responsible for the consistency of the domain.

@ Whenever an atom is generated, we update the internal structure of
the constraint

Definition

DOMAINFAITHFULNESS(X, [b1 ... bp], [v1, ..., va]) : Vi, bj > x < v;

Arc consistency

Can be enforced in constant amortized time complexity (O(1)) down a
branch of the search tree
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DISJUNCTIVE-based Learning

@ Branch on the reified Boolean variables J

@ — There exists an explanation for every bound literal [x < u]
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DISJUNCTIVE-based Learning

@ Branch on the reified Boolean variables

@ — There exists an explanation for every bound literal [x < u]

DisJUNCTIVE-based Learning
Two phases:
@ First UIP cut with a reified Boolean variable

@ Apply resolution for every bound literal until having a nogood with
only reified Boolean variables
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Learning in Disjunctive Scheduling

DISJUNCTIVE-based Learning

@ Branch on the reified Boolean variables

@ — There exists an explanation for every bound literal [x < u]

DisJUNCTIVE-based Learning
Two phases:
@ First UIP cut with a reified Boolean variable

@ Apply resolution for every bound literal until having a nogood with
only reified Boolean variables

' No domain encoding
. Scheduling horizon does not manner in size

© Language of literals is restricted compared to standard approaches
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Learning in Disjunctive Scheduling

Experimental results

Protocol
@ Mistral-Hybrid: new hybrid solver with

backward explanation
semantic reductions

lazy generation
DIsJUNCTIVE-based learning

e https://github.com/siala/Hybrid-Mistral
@ Job Shop and Open Shop benchmarks
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Experimental results: Job Shop
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Learning in Disjunctive Scheduling

Experimental results: Job Shop

Lawrence results

Mistral(task) [Hybrid(vsids, disj)[Hybrid(vsids, lazy)|Hybrid(task, disj)|Hybrid(task, disj)
T %0 T %0 T %0 T %0 T %0
471.97|88.75]|396.20 92]]602.51 88]|410.55|  90.50|]489.25 89)
Taillard results

Mistral(task) Hybrid(vsids, disj) | Hybrid(vsids, lazy) | Hybrid(task, disj) | Hybrid(task, lazy)

M | Size M |Nodes/S M |Nodes/S M |Nodes/S M |Nodes/S
[ %ol 1] [%0[ __ T [%0] __ T [[%o] __T] [[%o] 1] I
[tOl-lOH 90]616.22]8871.32] 90]477,79] 6814,73] 87]999.17[1213.57“ 90[574.87]4869.45“ 85]1115.49]1261.70“1

[_PRD [__PRD [__PRD [__PRD [ __PRD
t11-20|| 3.2381 [6509.44| 3.0350 | 3970.85 1.8937 520.62|| 0.4808 |2715.29 0.1169 539.79
t21-30|| 0.7302 [3935.87| 0.2769 |2424.16| 0.4756 413.90|| 0.2485 |[1752.05 0.1557 437.04
t31-40|| 1.7227 |4503.78| 0.7109 | 2598.25| 0.3043 555.36|| 0.6016 |1517.04 0.4103 566.18
t41-50|| 2.2161 |2570.10| 0.4798 1530.42| 0.3036 413.48|| 0.5420 994.61 0.6163 443.63!
t51-60|| 2.0798 |1952.51| 2.2847 |2602.31| 2.7990 562.71 0.1621 1131 0.2419 698.37
t61-70|| 3.2381 |1349.73| 3.0350 |2183.79| 1.8937 522.25|| 0.4808 920.55 0.1169 584.14

@ PRD: percentage relative deviation
Mohamed Siala PhD Defense May 2015




Learning in Disjunctive Scheduling

Experimental results: Summary

o ‘Light’ CP models are extremely efficient with small sized instances

@ These models benefit essentially from the fast exploration speed

@ The impact of clause learning is more and more glaring when the size
of the instance grows

@ DISJUNCTIVE-based learning outperforms the other models on
medium sized instances
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Experimental results: lower bounds experiments
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Learning in Disjunctive Scheduling

Experimental results: lower bounds experiments

Open instances from Taillard benchmark
@ 7 new bounds found with DISJUNCTIVE-based and VSIDS

tail3

tai2l

tai23

tai2b

tai26

tai29

tai30

new | old

new

old

new

old

new

old

new

old

new

old

new

old

1305(1282

1613

1573

1514

1474

1543

1518

1561

1558

1573

1525

1508

1485
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Learning in Disjunctive Scheduling

Experimental results: lower bounds experiments

Open instances from Taillard benchmark
@ 7 new bounds found with DISJUNCTIVE-based and VSIDS

tail3 tai2l tai23 tai2b tai26 tai29 tai30
new | old |new | old [new | old | new | old | new | old | new | old | new | old
1305(1282|1613|1573|1514(1474(1543|1518(1561(1558|1573|1525|1508(1485

[ 1342 | 1642 | 1518 | 1558 | 1501 | 1573 | 1519 |

[Vilim et al., 2015]
e IBM CP-Optimizer studio
8h20min per instance

Parallelization: Double threading phase

Start search with best known bounds as an additional information.
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Outline

© Conclusions & Perspectives
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Conclusions & Perspectives

Summary

@ Contributions to each of the three aspects of constraint programming
that are ‘search’, ‘propagation’ and ‘learning’ for efficiently solving
sequencing and scheduling problems.
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Conclusions & Perspectives

Summary

@ Contributions to each of the three aspects of constraint programming
that are ‘search’, ‘propagation’ and ‘learning’ for efficiently solving
sequencing and scheduling problems.

o Case study: car-sequencing
o Clause Learning in CP

Modern constraint programming solvers may not underestimate any of
these three aspects
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Conclusions & Perspectives

Future Research

Car-Sequencing:

o Application to ‘real’ industrial situations [Solnon et al., 2008].
Propagation via ATMOSTSEQCARD:

e Incrementality?

e More extensions?
Explanation for ATMOSTSEQCARD:

e Minimal explanations?
e Applications to other sequencing problems.

Learning in Scheduling Problems:

o Applications to other scheduling problems.
o Learning with global constraints.
e Hand-crafted learning.
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Conclusions & Perspectives

Thank you.
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