Search, propagation, and learning in sequencing and scheduling problems

Mohamed Siala

http://ucc.insight-centre.org/msiala mohamed.siala@insight-centre.org Christian Artigues LAAS-CNRS Toulouse Fahiem Bacchus University of Toronto Christian Bessiere LIRMM Montpellier Hadrien Cambazard G-SCOP & Grenoble INP Emmanuel Hebrard LAAS-CNRS Toulouse George Katsirelos INRA Toulouse Christine Solnon INSA Lyon

EurAl Disseration Award

Context

Sequencing and Scheduling: the organization in time of of operations subject to capacity and resource constraints.

Context

PhD Context

- Combinatorial (optimization) problems
- Constraint satisfaction and optimization
- Laboratory: LAAS-CNRS, Toulouse
- Research Team: ROC (Operations Research, Combinatorial Optimization and Constraints)
- Supervision: Christian Artigues, and Emmanuel Hebrard
- Funding:

< ロ > < 同 > < 三 > < 三

Thesis overview

Constraint Programming: Search \oplus Propagation

3

Thesis overview

Constraint Programming: Search \oplus Propagation \oplus Learning

(日) (同) (三) (三)

Thesis overview

Constraint Programming: Search \oplus Propagation \oplus Learning

All these aspects are important and must all be taken into account in order to design efficient solution methods

Mohamed Siala

EurAI Disseration Award

September 2016 4 / 30

Outline

Context

Background

- Case Study: The Car-Sequencing Problem
 Propagation
 - Learning
- 4 Learning in Disjunctive Scheduling
- 5 Conclusions & Perspectives

3

イロト イヨト イヨト イヨト

A constraint is a finite relation

3

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints
- Constraint Satisfaction Problem (CSP): deciding whether a constraint network has a solution or not
- CSP is NP-Hard in general

A constraint is a finite relation

Definition

A constraint network (CN) is defined by a triplet $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- $\mathcal{X} = [x_1, \dots, x_n]$: finite set of variables
- \mathcal{D} : a domain for \mathcal{X}
- C: finite set of constraints
- Constraint Satisfaction Problem (CSP): deciding whether a constraint network has a solution or not
- CSP is NP-Hard in general
- Complete backtracking algorithms

hamed	

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Search

• Search: decisions to explore the search tree

-

Search

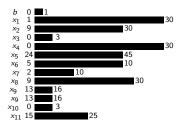
- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering

Search

- Search: decisions to explore the search tree
- \bullet Search in $\mathrm{CP}{=}$ variable ordering + value ordering
- Standard or customized

Search

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

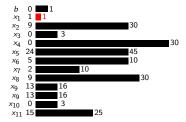

Propagation

- Propagation: inferences based on the current state
- Constraint \leftrightarrow propagator
- The level of pruning \leftrightarrow local consistency

Background

Learning

 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$

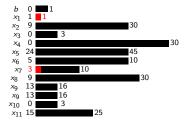


		2.46
EurAI Disseration Award	September 2016	9 / 30

Mohamed Siala

 $[\![x_1 = 1]\!]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

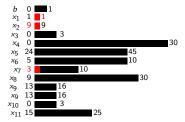


			1 2 1 1 2 1	Ξ.	\$) Q (\$
Siala	EurAI Disseration Award		September 2010	5	9 / 30

Mohamed Siala

$$[\![x_1=1]\!] \longrightarrow [\![x_7 \ge 3]\!]$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

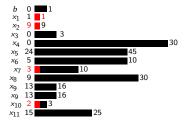


<ロ> (日) (日) (日) (日) (日)

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

 $[x_2 = 9]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$


9 / 30

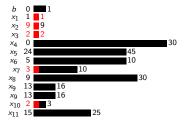
		$\blacksquare \blacksquare \blacksquare$	< 🗗 🕨	${\bf A}\equiv {\bf A}_{\rm c}$	(≣)	- 2
Mohamed Siala	EurAI Disseration Award			Septen	nber 20	16

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

<ロ> (日) (日) (日) (日) (日)


hamed	

$$[\![x_1=1]\!] \longrightarrow [\![x_7 \ge 3]\!]$$

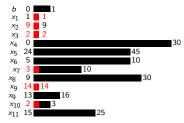
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

 $[x_3 = 2]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

◆□> ◆圖> ◆理> ◆理> 三語

9 / 30


EurAI Disseration Award	September 2016

$$[\![x_1=1]\!] \longrightarrow [\![x_7 \ge 3]\!]$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$

$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$


<ロ> (日) (日) (日) (日) (日)

Mohamed Siala			
	hamed	Sial	a

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \geq 3 \rrbracket$$

$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

<ロ> (日) (日) (日) (日) (日)

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$

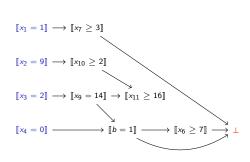
 $[x_4 = 0]$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

<ロ> (日) (日) (日) (日) (日)

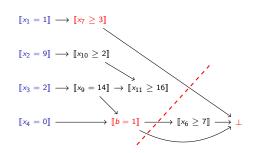
$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$
$$\llbracket x_4 = 0 \rrbracket \longrightarrow \llbracket b = 1 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$


<ロ> (日) (日) (日) (日) (日)

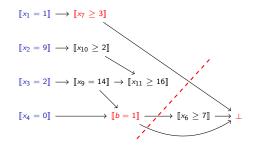
$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$
$$\llbracket x_2 = 9 \rrbracket \longrightarrow \llbracket x_{10} \ge 2 \rrbracket$$
$$\llbracket x_3 = 2 \rrbracket \longrightarrow \llbracket x_9 = 14 \rrbracket \rightarrow \llbracket x_{11} \ge 16 \rrbracket$$
$$\llbracket x_4 = 0 \rrbracket \longrightarrow \llbracket b = 1 \rrbracket \longrightarrow \llbracket x_6 \ge 7 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$


<ロ> (日) (日) (日) (日) (日)

$x_1 + x_7 \ge 4 \wedge$
$x_2 + x_{10} \ge 11 \land$
$x_3 + x_9 = 16 \wedge$
$x_5 \ge x_8 + x_9 \wedge$
$b \leftrightarrow (x_9 - x_4 = 14) \wedge$
$b \rightarrow (x_6 \geq 7) \wedge$
$b \rightarrow (x_6 + x_7 \leq 9) \wedge$
$x_{11} \ge x_9 + x_{10}$

(日) (同) (日) (日) (日)



• Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$

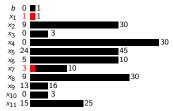
 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$

(日) (周) (三) (三)

• Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$

• New clause:
$$\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \leq 2 \rrbracket$$

$$\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}$$

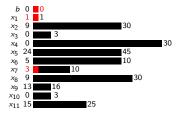


(日) (周) (三) (三)

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \le 2 \rrbracket$
- Backtrack to level 1

 $\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$

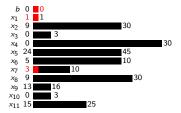


(日) (同) (三) (三)

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \le 2 \rrbracket$
- Backtrack to level 1
- Propagate the learnt clause

$$\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$$



(日) (同) (三) (三)

$$\llbracket x_1 = 1 \rrbracket \longrightarrow \llbracket x_7 \ge 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- Conflict analysis: $\llbracket b = 1 \rrbracket \land \llbracket x_7 \ge 3 \rrbracket \Rightarrow \bot$
- New clause: $\llbracket b \neq 0 \rrbracket \lor \llbracket x_7 \leq 2 \rrbracket$
- Backtrack to level 1
- Propagate the learnt clause
- Continue exploration

$$\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}$$

(日) (同) (三) (三)

Learning in CP

- $\bullet~{\rm Hybrid}~{\rm CP}/{\rm SAT}$
- Conflict Driven Clause Learning (CDCL) [Moskewicz et al., 2001]
- Based on the notion of explanation

A (10) A (10)

Summary of the thesis

<ロ> (日) (日) (日) (日) (日)

A (10) A (10) A (10)

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

• Propagation in a class of sequencing problems

THE 1 1

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Propagation in a class of sequencing problems
- Search in car-sequencing

E 5 4 E

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Propagation in a class of sequencing problems
- Search in car-sequencing
- Learning in car-sequencing

E 5 4 E

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Propagation in a class of sequencing problems
- Search in car-sequencing
- Learning in car-sequencing
- Revisiting lazy generation

- ×

Modern CP-Solvers may not underestimate any of the three aspects: search, propagation, and learning

Contributions

- Propagation in a class of sequencing problems
- Search in car-sequencing
- Learning in car-sequencing
- Revisiting lazy generation
- Learning in disjunctive scheduling

Outline

Background

Case Study: The Car-Sequencing Problem
 Propagation

Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives

э

(人間) トイヨト イヨト

Car-Sequencing

- ROADEF'05 challenge [Solnon et al., 2008]
- RENAULT

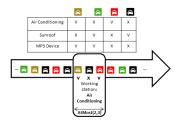
Mohamed Siala

EurAI Disseration Award

September 2016 13 / 30

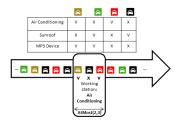
hamed	

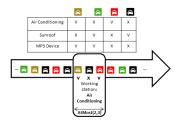
æ


イロト イヨト イヨト イヨト

• A class of vehicles is defined by a set of options

3


(日) (同) (三) (三)


- A class of vehicles is defined by a set of options
- Each class is associated to a demand

э

-

- A class of vehicles is defined by a set of options
- Each class is associated to a demand
- Capacity constraints: no subsequence of size *q* may contain more than *p* vehicles requiring a given option

- A class of vehicles is defined by a set of options
- Each class is associated to a demand
- Capacity constraints: no subsequence of size *q* may contain more than *p* vehicles requiring a given option
- Is there a sequence of cars satisfying both demand and capacity constraints?

Outline

Background

Case Study: The Car-Sequencing Problem
 Propagation

Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives

(人間) トイヨト イヨト

э

イロト イポト イヨト イヨト

Definition

 $\operatorname{ATMOSTSEQCARD}(\rho, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

3

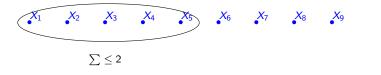
(日) (同) (三) (三)

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \dots, x_9]$)

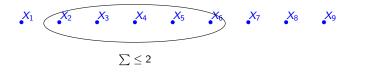

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ○ 2 ○ 2

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \dots, x_9]$)


			গৎক
Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \dots, x_9]$)

Mohamed Siala	EurAI Disseration Award	September 2016 17 / 30

ĴÌ.

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \dots, x_9]$)

	<		৩৫৫
Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD(2, 5, 4, $[x_1, \ldots, x_9]$)

Mahamad Ciala		· · · · · · · · · · · · · · · · · · ·	
Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD(2, 5, 4, $[x_1, \ldots, x_9]$)

	٩		୬ବନ
Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30

Definition

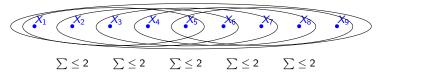
 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \ldots, x_9]$)

$$\sum = 4$$

$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7 \quad X_8 \quad X_9$$


		《曰》《聞》《臣》《臣》 []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	500
Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq p\right) \wedge \left(\sum_{i=1}^{n} x_{i} = d\right)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \dots, x_9]$)

Mohamed Siala	EurAI Disseration Award	September 2016	17 / 30
	4	(日本《國》《國》《國》《國》	596

Definition

 $\operatorname{ATMOSTSEQCARD}(p,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq p) \land (\sum_{i=1}^{n} x_i = d)$$

Example ATMOSTSEQCARD($2, 5, 4, [x_1, \ldots, x_9]$)

 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9

- Car sequencing
- Crew-Rostering/Timetabling

Mohamed Siala

EurAI Disseration Award

Arc Consistency on $\operatorname{AtMostSeqCard}$

Definition

A constraint C is Arc Consistent (AC) iff for every x in the scope of C, for every value $v \in D(x)$ there exists an assignment w in D satisfying C in which v is assigned to x

Definition

A constraint C is Arc Consistent (AC) iff for every x in the scope of C, for every value $v \in D(x)$ there exists an assignment w in D satisfying C in which v is assigned to x

 $\bullet\ \operatorname{AtMostSeq} \oplus \operatorname{Cardinality}$ is not enough

Arc Consistency on $\operatorname{AtMOStSEQCARD}$

Definition

A constraint C is Arc Consistent (AC) iff for every x in the scope of C, for every value $v \in D(x)$ there exists an assignment w in D satisfying C in which v is assigned to x

$\bullet\ \operatorname{AtMostSeq} \oplus \operatorname{Cardinality}$ is not enough

ATMOSTSEQCARD as a particular case?

- COST-REGULAR: $O(2^q n)$ [van Hoeve et al., 2009]
- GEN-SEQUENCE: $O(n^3)$ [van Hoeve et al., 2009]
- GEN-SEQUENCE: $O(n^2.log(n))$ down a branch \oplus initial compilation of $O(q.n^2)$. [Maher et al., 2008].

< ロ > < 同 > < 三 > < 三

Arc Consistency on $\operatorname{AtMostSeqCard}$

An example with $\operatorname{ATMOSTSEQCARD}(4, 8, 12, [x_1, \dots, x_{22}])$. 0 0 1 0 1

Mohamed Siala

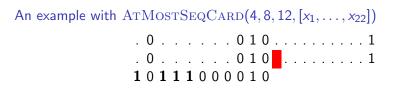
EurAI Disseration Award

September 2016 19 / 30

(日) (四) (日) (日) (日)

An example with ATMOSTSEQCARD(4, 8, 12, $[x_1, ..., x_{22}]$) . 0 0 1 0 1 . 0 0 1 0 1

- 4 同 6 4 日 6 4 日 6


An example with ATMOSTSEQCARD(4, 8, 12, $[x_1, ..., x_{22}]$) . 0 0 1 0 1 . 0 0 1 0 1

- 4 同 6 4 日 6 4 日 6

An example with ATMOSTSEQCARD(4, 8, 12, $[x_1, ..., x_{22}]$) . 0 0 1 0 1 . 0 0 1 0 1

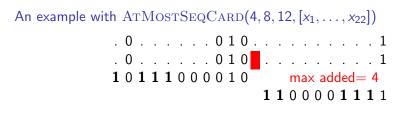
- 4 同 6 4 日 6 4 日 6

Arc Consistency on $\operatorname{AtMostSeqCard}$

Mohamed Siala

September 2016 19 / 30

Arc Consistency on $\operatorname{AtMostSeqCard}$


An example with ATMOSTSEQCARD(4, 8, 12, $[x_1, ..., x_{22}]$) . 0 0 1 0 1 . 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 max added= 4

Mohamed Siala

EurAI Disseration Award

September 2016 19 / 30

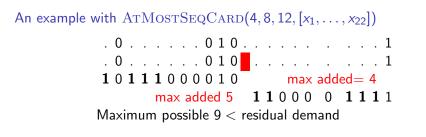
Arc Consistency on ATMOSTSEQCARD

Mohamed Siala

EurAl Disseration Award

September 2016 19 / 30

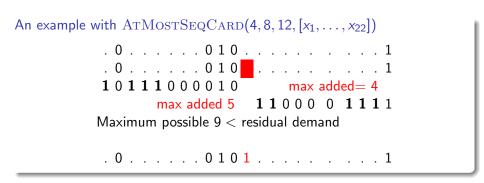
Arc Consistency on $\operatorname{AtMostSeqCard}$



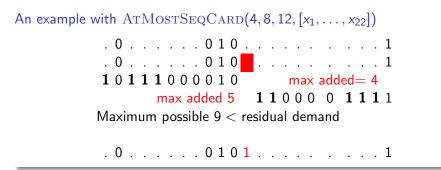
Mohamed Siala

September 2016 19 / 30

Propagation


Arc Consistency on $\operatorname{AtMostSeqCard}$

イロト 不得下 イヨト イヨト


Propagation

Arc Consistency on $\operatorname{AtMostSeqCard}$

Propagation

Arc Consistency on $\operatorname{AtMostSeqCard}$

• Arc Consistency in O(n) time (optimal)

• Extremely efficient in practice (Car-Sequencing + Crew Rostering)

イロト 不得下 イヨト イヨト

Outline

Background

Case Study: The Car-Sequencing Problem
 Propagation

Learning

4 Learning in Disjunctive Scheduling

5 Conclusions & Perspectives

(人間) トイヨト イヨト

Hybrid $\operatorname{CP}/\mathsf{SAT}$ Models

 \bullet Models based on $\operatorname{AtMostSeqCard}$

3

(日) (周) (三) (三)

- \bullet Models based on $\operatorname{AtMOStSeqCard}$
- We have to explain $\operatorname{AtMostSeqCard}$

3

(日) (同) (三) (三)

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?

- Explain ATMOSTSEQ and CARDINALITY
- Explaining the extra filtering: consider the naive explanation, then try to reduce it.

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?

- Explain ATMOSTSEQ and CARDINALITY
- Explaining the extra filtering: consider the naive explanation, then try to reduce it.

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?

- Explain ATMOSTSEQ and CARDINALITY
- Explaining the extra filtering: consider the naive explanation, then try to reduce it.

- \bullet Models based on $\operatorname{AtMostSeqCard}$
- We have to explain ATMOSTSEQCARD

Explaining ATMOSTSEQCARD?

- Explain ATMOSTSEQ and CARDINALITY
- Explaining the extra filtering: consider the naive explanation, then try to reduce it.

 $\widehat{\mathcal{D}}$: 1 1 1 1 0 0 0 0 . 0 0 . . . 1

4 3 5 4 3

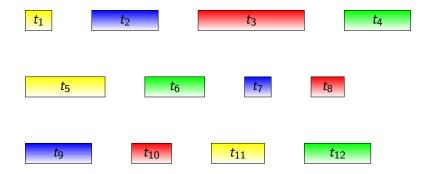
Experimental Results

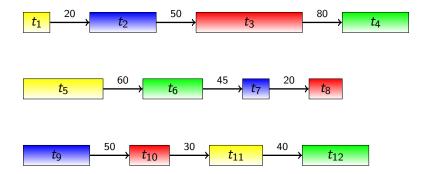
- CP, SAT, Hybrid CP/SAT models
- Finding solutions quickly: Propagation is very important to find solutions quickly when they exist.
- For proving unsatisfiability: Clause learning is by far the most critical factor.

Outline

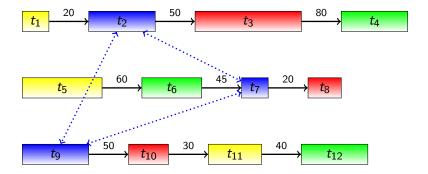
1 Context

2 Background

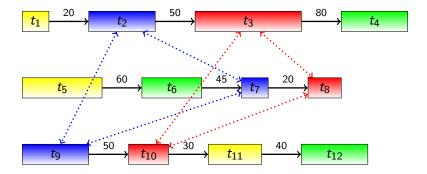

- Case Study: The Car-Sequencing Problem
 Propagation
 - Learning

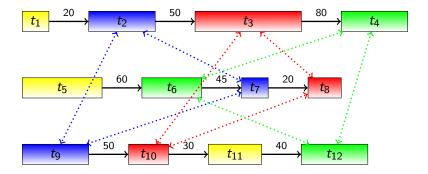

4 Learning in Disjunctive Scheduling

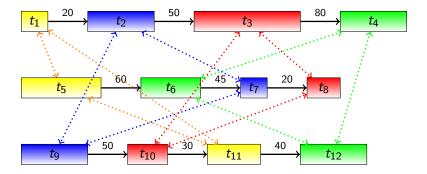
Conclusions & Perspectives


3

(日) (同) (三) (三)




◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

A.

Formulation

Unary Resource Constraint

3

Formulation

Unary Resource Constraint

 \bullet Decomposition using the following $\ensuremath{\mathrm{DISJUNCTIVE}}$ constraints:

$$\delta_{kij} = \begin{cases} 0 \iff t_{ik} + p_{ik} \le t_{jk} \\ 1 \iff t_{jk} + p_{jk} \le t_{ik} \end{cases}$$
(1)

$\ensuremath{\mathrm{DISJUNCTIVE}}\xspace$ Learning

DISJUNCTIVE-based Learning

Conflict analysis in two phases:

- Standard 1-UIP cut
- Apply resolution for every bound literal until having a nogood with only reified Boolean variables

$\ensuremath{\mathrm{DISJUNCTIVE}}\xspace$ Learning

DISJUNCTIVE-based Learning

Conflict analysis in two phases:

- Standard 1-UIP cut
- Apply resolution for every bound literal until having a nogood with only reified Boolean variables
- ⊕ No domain encoding
- \oplus Scheduling horizon does not manner in size
- \ominus Language of literals is restricted compared to standard approaches

$\ensuremath{\mathrm{DISJUNCTIVE}}\xspace$ Learning

DISJUNCTIVE-based Learning

Conflict analysis in two phases:

- Standard 1-UIP cut
- Apply resolution for every bound literal until having a nogood with only reified Boolean variables
- O No domain encoding
- \oplus Scheduling horizon does not manner in size
- \ominus Language of literals is restricted compared to standard approaches

ta	i13	tai	21	tai	tai23		tai25		tai26		tai29		tai30	
new	old	new	old	new	old	new	old	new	old	new	old	new	old	
1305	1282	1613	1573	1514	1474	1543	1518	1561	1558	1573	1525	1508	1485	

Outline

1 Context

2 Background

- Case Study: The Car-Sequencing Problem
 Propagation
 - Propagatio
 - Learning
- 4 Learning in Disjunctive Scheduling
- 5 Conclusions & Perspectives

3

・ロン ・四 ・ ・ ヨン ・ ヨン

• Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.

E 5 4

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing

- ×

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing
- Clause Learning in CP

- ×

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing
- Clause Learning in CP

Modern constraint programming solvers may not underestimate any of these three aspects

E 6 4 E

- Contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems.
- Case study: car-sequencing
- Clause Learning in CP

Modern constraint programming solvers may not underestimate any of these three aspects

Future Research

- (Car-Sequencing) Application to 'real' industrial situations?
- More extensions for ATMOSTSEQCARD?
- Hand crafted learning?

< 152 ▶

Thank you for your attention!

Special thanks to my co-authors..

- Christian Artigues
- Emmanuel Hebrard
- Marie-Jose Huguet
- Valentin Mayer-Eichberger
- Nina Narodytska
- Thierry Petit
- Toby Walsh

References I

Maher, M. J., Narodytska, N., Quimper, C., and Walsh, T. (2008). Flow-based propagators for the SEQUENCE and related global constraints. In Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming, CP'08, Sydney, NSW, Australia, pages 159–174.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff: Engineering an Efficient SAT Solver.

In Proceedings of the 38th Annual Design Automation Conference, DAC'01, Las Vegas, Nevada, USA, pages 530–535.

Solnon, C., Cung, V., Nguyen, A., and Artigues, C. (2008). The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the roadef'2005 challenge problem.

European Journal of Operational Research, 191(3):912–927.

van Hoeve, W. J., Pesant, G., Rousseau, L., and Sabharwal, A. (2009). New filtering algorithms for combinations of among constraints. *Constraints*, 14(2):273–292.

(日) (周) (三) (三)