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Context

• Understanding instance hardness?

• Not from a complexity point of view, but from solver
point of view

• The notion of backdoor
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Backdoor

Intuition

• Hardness is concentrated in a small part of the instance.

• The notion of backdoor isolates the area where hardness
occurs in terms of variables.

Definition (Williams, Gomes, Selman 2003)
Let I be a satisfiable CSP instance, a backdoor is a subset B of
variables such that there exists an assignment of the variables
in B that makes it easy to find a solution for I .
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Backdoor Key Fraction (BKF)

• A partial solution is an instantiation that does not violate
any constraint

Definition (Ruan, Kautz, Horvitz 2004)
Let B be a backdoor for a satisfiable instance I .
Let v ∈ B and let S a partial solution for B \ {v}.
• v is dependent: exactly one value a in the domain of v
such that S ∪ {a} can be extended to a solution for I .

• key fraction of B : #dependent variables in B
|B|

Hypothesis
higher backdoor key fraction⇔ harder instance
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Limitation of BKF

There are two major cases where the backdoor key fraction is not
useful.

• Case when there is only one solution: =⇒ BFK always 1.

• Case when flipping the truth assignment of any variable
in the backdoor and still extend the backdoor to a
solution: =⇒ BFK always 0.
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Characterizing Hardness in Backtracking Search

Search space The choices made by the solver.
Solution space The choices made by the solver that lead to a

solution.

Combining both

• Large search space + small solution space
=⇒ A lot of choices made, few of them good
=⇒ The solver takes a long time to find a solution.

• Solution space close to the search space
=⇒ Almost all the choices made are good
=⇒ solver finds a solution quickly.
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Completability Ratio

Definitions
Let B be a backdoor for I . Completability ratio of B is
#completable

#partial , with:

• #partial the number of partial solutions for B .

• #completable the number of partial solutions for B that
can be extended to a solution for I .
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Backdoor Completability

Definition
Backdoor completability of a satisfiable instance I :
average completability ratio of all minimal backdoors of I .

Hypothesis
lower backdoor completability⇔ harder instance
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Theoretical Justification

What we want
A class C of instances, a solver A.

• C is tractable for A→ backdoor completability of all
instances in C is high.

• C is not tractable for A→ backdoor completability of
some instances in C is low.
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Scope of the Result

Instance classes

• C1 ⊂ C2 ⊂ . . . where a satisfiable instance is in Cp if the
treewidth of its primal constraint graph is bounded by p.

• Treewidth is often used for tractability results.

• The union of all Cp is equal to the whole satisfiable CSP.

Solvers

• A1,A2, . . . where Aq is based on (q, 1)-consistency.
• The transition between tractability and hardness is sharp:
for any class Cp and solver Aq :

• p ≤ q → Aq finds Cp trivial.
• p > q → Aq fails to solve some instances in Cp .

so the distinction between low and high completability
values should be clear.
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Theorem
For any two integers p, q exactly one of the following is true:

1. p ≤ q and for every I ∈ Cp , the backdoor completability of
I is 1.

2. p > q and there is an infinite number of instances in Cp
with a backdoor completability exponentially low in the
number of variables.

Proof

1. From the construction of the solvers.

2. For each number n, we build an instance in Cp with more
than n variables and a backdoor completability with
regard to Aq asymptotically lower than 1

2n .
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Experimental study

• Quasigroup with Holes

• 1100 instances of order 22
• Number of ‘‘holes’’ between 192 and 222: peak of difficulty

at 204

• Random CSP

• 1200 instances with 60 variables and 1770 constraints
• Average constraint tightness uniformly between 5% and

16%: peak of difficulty at 8%.

• Mistral solver with default configuration

• Standard method to find backdoors
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Quasigroup With Holes
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Quasigroup With Holes
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Random CSP
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Conclusions & Future Research

Conclusion

• A better hardness measure compared to the backdoor
key fraction

• Theoretical and experimental studies to support our claim

Future Research

• Predict hardness? Very expensive to compute : Could it
be approximated?

• Generate hard instances?

• Design branching heuristics?
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Thank you!
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