
Declarative Combinatorial Optimisation For
Machine Learning: Challenges & Opportunities

Mohamed Siala
https://siala.github.io

INSA-Toulouse & LAAS-CNRS

July 14, 2022

Mohamed Siala (Toulouse) July 14, 2022 1 / 76



Context

AI & Modern Decision making

AI technology ranges from two extremes: Logic-based reasoning as
opposed to learning

Logic-based reasoning breaks down the problem to solve into a
deterministic sequence of instructions. This is typically reflected
with propositional logic, symbolic AI, expert systems, and yes,
combinatorial optimisation

Learning is about reasoning with pattern matching based on
historical observations. This includes models based on neural
networks, statistical methods . . .

Modern decision-making applications require both “orthogonal”
approaches
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Combinatorial Optimisation

Solving Methodologies

1 Adhoc methods

Manually find an algorithm for the specific problem at hand
The algorithm can be exact (i.e., with a guarantee of optimality) or heuristic

2 Declarative Approaches

The unknown of the problems are modeled as decision variables,
each associated to a domain (set of values)
The problem to solve is stated as a set of constraints to satisfy
defined over the variables following a specific language
Eventually a utility function (called objective function) to optimise
can be part of the problem to solve
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Combinatorial Optimisation

Declarative Approaches

Why Declarative Approaches?

Adhoc methods are brittle

Declarative approaches are problem independent! The user models
the problem in a specific language and the solver does the job!

Very active community:

Solver competitions: SAT, MaxSAT, SMT, MIP, XCSP, minizinc
competitions, . . .
Benchmarks: CSPLib, MIPLIB, . . .
Open and commercial Tools: Gurobi, CP Optimizer, OrTools,
Chuffed, . . .
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Combinatorial Optimisation

Examples of Declarative Approaches

Boolean Satisfiability (SAT)

Binary variables
The constraints are modelled using clauses (for example
a ∨ ¬b ∨ c ∨ ¬d)

(Mixed) Integer Programming (MIP)

Integer and/or Continuous Variables
The constraints as well as the objective function are linear

Constraint Programming (CP)

Integer, continuous, or sets variables
A constraint can be any mathematical relation involving a set of
variables
The objective function can have different forms
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Typical Applications
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Machine learning

Machine Learning

Machine learning is a computing approach based on learning
patterns from historical data

Input ⇐⇒ learning algorithm ⇐⇒ ML model ⇐⇒ decision making

Multiple variants exist

Supervised Learning (Labelled data): Predict a function that
associates inputs to outputs based on historical data
Unsupervised Learning: The task is to figure out patterns
presented in the data (unlabelled data)
Reinforcement learning: Learn from a series of rewards and
punishments
But also other variants: labelled/non labelled, semi-supervised
learning, etc
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Machine learning

Supervised ML: Problem Definition

Given a historical data (training set) in the form of input-output
examples: {(x1, y1), . . . (xn, yn)} where xi is an input, yi is the
output of xi

Find a function fh (called a hypothesis or model) that
approximates the true function f

The approximation criterion can be defined in different ways. We
can consider it as a function minimizing some error.

The hypothesis class is given: for instance decision trees, neural
networks, . . .
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Machine learning

Toy Example: DTs to Predict The Likelihood of Animal
Extinction

Big Size Carnivore Seasonal Solitary Extinct
Reproduction

0 1 0 1 yes

1 0 0 1 yes

0 0 0 1 no
1 1 1 0 no
0 0 1 0 yes

Solitary?

YES

+

NO

Carnivore?

YES

+

NO

−

Seasonal Reproduction?

YES

Solitary?

YES

+

NO

−

NO

Large Size?

YES

−

NO

+

Tabular data

Hypothesis space: Decision trees

Left tree: accuracy 2/5

Right tree: accuracy 2/5
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Machine learning

Training Phase

The function fh is constructed via a training algorithm

The training algorithm depends on the hypothesis space

Examples of hypothesis space (family of functions) include
polynomial functions, trigonometry functions, decision trees,
decision lists, neural networks, . . .
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Machine learning

Testing Phase

The evaluation of the constructed hypothesis (or model) is done
via a set of unseen examples called testing set

The testing set is usually taken randomly from the initial data.
However, it shouldn’t be part of the training set

The common way is to split the initial data into a training and
testing sets randomly

Mohamed Siala (Toulouse) July 14, 2022 16 / 76



Machine learning

Learning Algorithms

Typical machine learning algorithms are heuristic (no guarantee of
optimality): gradient descent, CART, XGBoost, . . .

In many cases, it is hard to tweak the learning algorithm to meet
specific requirements (such as fairness or some statistical
measures, variants of the hypotheses class, . . . )
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Machine Learning ←→ Combinatorial Optimisation

Machine Learning For Combinatorial Optimisation

Solver tuning based on historical experiences (for instance Bessiere
et al. ((2009)) )

Guiding the search space exploration: Reinforcement Learning as
an exploration strategy (for instance Antuori et al. ((2021)) )

Handel uncertainty in several contexts such as
predict-and-optimise problems and constraint-acquisition Bessiere
et al. ((2020)); Mandi et al. ((2020))

Some other references: Bengio et al. ((2021)); Hoos and Stützle
((2018))
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Machine Learning ←→ Combinatorial Optimisation

Combinatorial Optimisation for Machine Learning [1]

Meeting specific requirements such as:

Robustness: Verifying Properties of Binarized Deep Neural
Networks. Narodytska et al., AAAI 2018

Fairness: Leveraging Integer Linear Programming to Learn
Optimal Fair Rule Lists, Aı̈vodj et al., CPAIOR’22

Privacy: Constrained-Based Differential Privacy for Mobility
Services Fioretto et al., AAMAS 2018
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Machine Learning ←→ Combinatorial Optimisation

Combinatorial Optimisation for Machine Learning [2]

Learning with Declarative Approaches such as:

CP to learn Decision trees: Minimising Decision Tree Size as
Combinatorial Optimisation. Bessiere et al. CP 2009

CP to learn Decision trees: Learning optimal decision trees
using constraint programming. Verhaeghe et al., Constraints,
2020

SAT to learn NNs: In Search for a SAT-friendly Binarized
Neural Network Architecture. Narodytska et al., ICLR 2020

CP and MIP to learn NNs: Training Binarized Neural
Networks Using MIP and CP. Icarte et al., CP 2019
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Machine Learning ←→ Combinatorial Optimisation

Combinatorial Optimisation for Machine Learning [3]

Post-Processing & Decision-making such as:

Compression: Lossless Compression of Deep Neural Networks.
Serra et al., CPAIOR 2020

Explanations: Using MaxSAT for Efficient Explanations of
Tree Ensembles Ignatiev et al., AAAI 2022
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Combinatorial Optimisation for Fairness
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Combinatorial Optimisation for Fairness

Leveraging Integer Linear Programming

to Learn Optimal Fair Rule Lists
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Combinatorial Optimisation for Fairness

Quantifying Fairness [1]

The COMPAS Example ((Angwin et al., 2016))

Binary classification task: Recidivism within two years

Sensitive attribute: Ethnicity (African-American/Caucasian)

Protected Groups:

A ∶ African-American individuals;
B ∶ Caucasian individuals;

Statistical Fairness

Principle: ensure that some measureM differs by no more than ϵ
between several protected groups

In the particular case of two protected groups (A) and (B), one
need to ensure that ∣M(A) −M(B)∣ < ϵ

Mohamed Siala (Toulouse) July 14, 2022 25 / 76



Combinatorial Optimisation for Fairness

Confusion Matrix

Consider a data set with 100 individuals: 70 positives and 30
negatives

The confusion matrix:

Predicted Positively Predicted Negatively

True Positive (TP) 65 5

True Negative (TP) 10 20

True Positive rate (TP): Positive individuals has 93% chance to be
correctly predicted

True Negative rate (TN): Negative individuals has 66% chance to
be correctly predicted
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Combinatorial Optimisation for Fairness

Quantifying Fairness [2]

Table 1: Examples of Statistical Fairness Metrics

Metric Statistical Measure

Statistical Parity

(SP) ((Dwork et al., 2012))

Probability of Positive

Prediction

Equal Opportunity

(EOpp) ((Hardt et al., 2016))
True Positive Rate

Predictive Equality

(PE) ((Chouldechova, 2017))
False Positive Rate

Equalized Odds (EO) ((Hardt et al., 2016)) PE and EOpp

Mohamed Siala (Toulouse) July 14, 2022 27 / 76



Combinatorial Optimisation for Fairness

Rule Lists

Rule Lists: Definition

Rule lists ((Rivest, 1987)) are classifiers formed by an ordered list of
if-then rules

Example: The German Credit Dataset

The task is to predicting whether individuals have a good or bad
credit score

if [gender:female] Then [good score]
if [age ≤ 25] Then [bad score]

Else [high score]
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Combinatorial Optimisation for Fairness

CORELS & FairCORELS

ROOT

Age>25Gender:MaleAge<=25 Gender:Female

Gender:Male Age>25 Gender:Female Age<=25 Age>25 Gender:Female Gender:FemaleAge<=25Gender:Male Gender:Male Age<=25

Age>25

Age>25

Gender:Female Gender:Male Gender:Female Gender:Male Age>25 Gender:Female Age<=25Age>25Age>25 Age>25 Gender:Female Age<=25 Age>25Age<=25 Gender:Female Age<=25 Gender:Male Gender:Female Gender:Male Age<=25 Age<=25 Age>25 Gender:Male Age>25 Age<=25 Gender:Male

Gender:Female Age>25 Gender:Female Gender:Male Gender:Male Gender:Female Age>25 Gender:FemaleAge>25 Age<=25 Age>25 Age<=25 Age<=25 Gender:Female Gender:Female Gender:Male Age<=25 Gender:Male Age>25 Age<=25 Gender:MaleAge>25 Gender:Male Age<=25

Figure 1: Breadth First Exploration
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Combinatorial Optimisation for Fairness

Pruning Based on an Integer Linear Program

The idea is to bound the confusion matrix for all possible
extensions at each step of the search space by reasoning about
both classification and fairness requirements

The bounding is done using using four discrete variables and two
constraints

If the ILP does not have a solution then no extension can meet
both classification and fairness requirements
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Combinatorial Optimisation for Fairness

Example: The ILP model for Equal Opportunity

Inputs: Prefix δ , dataset E, accuracy lower and upper bounds L and U , unfairness

tolerance ϵ

Variables:

xTPE,p ∈ [TP δ
E,p, ∣E

p
∩ E
+
∣ − FNδ

E,p], xTPE,u ∈ [TP δ
E,u, ∣E

u
∩ E
+
∣ − FNδ

E,u],

xFPE,p ∈ [FP δ
E,p, ∣E

p
∩ E
−
∣ − TNδ

E,p], xFPE,u ∈ [FP δ
E,u, ∣E

u
∩ E
−
∣ − TNδ

E,u].

Constraints:

L ≤ xTPE,p + xTPE,u + ∣Ep ∩ E−∣ − xFPE,p + ∣Eu ∩ E−∣ − xFPE,u ≤ U (1)

−C3 ≤ ∣E
p
∩ E
+
∣ × xTPE,u − ∣Eu ∩ E+∣ × xTPE,p ≤ C3 (2)

with C3 = ϵ × ∣E
p
∩ E
+
∣ × ∣E

u
∩ E
+
∣

Bounding the classification

Bounding the fairness
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Combinatorial Optimisation for Fairness

Purpose of the Experimental Study

Is the filtering effective?

Is filtering helpful to prove optimality ?

Does the filtering slow down the search space exploration?

Is it a burden on the memory consumption?

How about the quality of solutions?
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Combinatorial Optimisation for Fairness

Implementation and Setup I

Integrating our ILP within FairCORELS

ILOG CPLEX 20.10 solver

Different models

BFS Original: original FairCORELS with a Breadth-First Search
(BFS)
BFS Eager: using a BFS policy, performs the ILP-based pruning
before inserting a node into the priority queue
BFS Lazy: using a BFS policy, performs the ILP-based pruning
after extracting a node from the priority queue
ILP Guided: best-first search (priority queue ordered by the ILP
objectives) with an Eager pruning
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Combinatorial Optimisation for Fairness

Implementation and Setup II

We compare the four approaches with the four statistical measures
mentioned before using many values for ϵ on 100 randomized runs

Two datasets:
COMPAS ((Angwin et al., 2016))

Number of examples: 6150
Binary classification task: Recidivism within two years
Sensitive attribute: Ethnicity (African-American/Caucasian)
Number of binary rules: 18

German Credit ((Dua and Graff, 2017))

Number of examples: 1000
Binary classification task: Good or bad credit score
Sensitive attribute: Age (Low/High)
Number of binary rules: 49

Maximum memory use: 4 Gb

COMPAS: 20 minutes, German Credit 40 minutes

For each dataset: 100 random different train/test splits
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Combinatorial Optimisation for Fairness Certifying Optimality

Certifying Optimality I
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(b) German Credit dataset

Figure 2: Proportion of instances solved to optimality as a function of 1 − ϵ.
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Combinatorial Optimisation for Fairness Certifying Optimality

Certifying Optimality II
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Figure 3: CPU time as a function of the proportion of instances solved to
optimality, for high fairness requirements (unfairness tolerances ranging
between 0.005 and 0.02).
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Combinatorial Optimisation for Fairness Reducing Cache Size

Reducing Priority Queue (Cache) Size
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Figure 4: Relative cache size (#nodes) as a function of 1 − ϵ (experiments for
the Equal Opportunity fairness metric).
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Combinatorial Optimisation for Fairness Speeding Up Convergence

Speeding Up Convergence
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Figure 5: Solving time as a function of the objective function quality
normalized score, for high fairness requirements (unfairness tolerances ranging
between 0.005 and 0.02).

Mohamed Siala (Toulouse) July 14, 2022 38 / 76



Combinatorial Optimisation for Fairness Speeding Up Convergence

Conclusions

The main idea is to combine accuracy and fairness jointly to prune
the search space

The confusion matrix is bounded effectively thanks to an ILP

The search space is efficiently boosted on three levels:

Finding better solutions quicker (after few seconds)
Proofs of optimality
Less memory usage
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Combinatorial Optimisation for Fairness Speeding Up Convergence
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Learning via Combinatorial Optimisation

Learning Binary Decision Diagrams

(BDD) via MaxSAT
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Learning via Combinatorial Optimisation

Why BDDs

Figure 6: An Example of Decision Tree
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Learning via Combinatorial Optimisation

Learning Algorithms: The Binary Decision Diagram
Example

Figure 7: Fragmentation and Redundancy with Decision Tree
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Learning via Combinatorial Optimisation

An equivalent BDD

Figure 8: Equivalent Binary Decision Diagram (BDD)
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Learning via Combinatorial Optimisation

Binary Decision Diagram

Let [x1, . . . xn] be a sequence of n Boolean variables

A BDD is a rooted, directed, acyclic graph

Two types of nodes: terminal and non terminal

Exactly two terminal nodes labelled with two different values (0
and 1)

Each non-terminal node is associated to a distinct Boolean
Variable xi

Each non-terminal node has exactly two children

Ordered property: The variables ordering from any path from
the root to a sink node is compatible the order in the sequence
[x1, . . . xn]
Reduced Property: No isomorphic sub-graphs
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Learning via Combinatorial Optimisation

Learning BDD Kohavi and Li ((1995))

Heuristic approach

Top-Down approach

The idea of is to build an Oblivious Decision Tree, then merge
isomorphic sub-trees

Hardly flexible to handle additional requirements and properties
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Learning via Combinatorial Optimisation

Boolean Functions as Strings

Given S = [x1, . . . xn] a sequence of Boolean variables, a Boolean
function over S can be represented by a binary string of size 2n

that corresponds to the output of the truth table.

For instance, with three variables, the string 01100110 represents
the following Boolean function:

x1 x2 x3 output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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Learning via Combinatorial Optimisation

Beads and BDDs

A bead is a binary string of size 2n such that the first half is
different from the second half

For instance:

a = 01111101 is a bead 0111 ≠ 1101
b = 01110111 is not a bead 0111 = 0111

Proposition From Knuth ((2009)) : All vertices in a BDD, are in
one-to-one correspondence with the beads of the Boolean function
it represents
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Learning via Combinatorial Optimisation

Maximum Satisfiability (MaxSAT)

A clause is a disjunction of Boolean variables or their negations.
For instance a ∨ ¬b ∨ ¬c ∨ d

A MaxSAT problem is defined by

A set of Boolean variables [x1, . . . xn]
A set of Hard clauses to satisfy
A set of Soft clauses that can be violated
The purpose is to find an assignment of the variables that satisfies
all the hard clauses and maximizes the number of satisfied soft
clauses
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Learning via Combinatorial Optimisation

MaxSAT for Learning an Optimal BDD

Consider a binary dataset with M examples and K features

The purpose is to learn a BDD of depth H with the maximum
accuracy

The idea is to figure out a sequencing of H features that are used
in the desired BDD

The sequencing of the features with the output string are used to
find the beads of the Boolean function

Once the sequencing and the beads are identified, the BDD is
constructed as a post processing step
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Learning via Combinatorial Optimisation

MaxSAT Model: Variables

Three Sets of Variables

air where r ∈ [1..K] and i ∈ [1..H] is true iff the feature r is in the
position i of the sequence of features

cj where j ∈ [1..2H] is true iff the jth value of the output string is 1

dqi where i ∈ [1..H] and q ∈ [1..M] is true iff for example eq, the
value of the ith feature in the feature ordering is 1
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Learning via Combinatorial Optimisation

MaxSAT Model: Constraints (1)

1 For each feature r, ∑H
i=1 a

i
r ≤ 1

2 For each level i, ∑K
r=1 a

i
r = 1

3 The truth table is a bead: ⋁2H−1

j=1 (cj ⊕cj+2H−1)
4 Consistency w.r.t. examples:
∀q ∈ [1,M],∀i ∈ [1, . . .H],∀r ∈ [1,K]:

If the value of fr is 1 in example eq then: air→dqi
If the value of fr is 0 in example eq then : air→¬dqi

5 For each positive example eq, we have 2H constraints for
classifying examples correctly:

¬dq1 ∧ ¬d
q
2∧ ⋅ ⋅ ⋅ ∧ ¬d

q
H−1 ∧ ¬d

q
H → c1

¬dq1 ∧ ¬d
q
2∧ ⋅ ⋅ ⋅ ∧ ¬d

q
H−1 ∧ dqH → c2

. . .

dq1 ∧ dq2∧ ⋅ ⋅ ⋅ ∧ dqH−1 ∧ dqH → c2H

(3)

6 The same idea is applied for negative examples (with ¬cj)
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Learning via Combinatorial Optimisation

MaxSAT Model: Constraints (2)

1 HARD: For each feature r, ∑H
i=1 a

i
r ≤ 1

2 HARD: For each level i, ∑K
r=1 a

i
r = 1

3 HARD: The truth table is a bead: ⋁2H−1

j=1 (cj ⊕cj+2H−1)
4 HARD: For each example eq, ∀i ∈ [1, . . .H],∀r ∈ [1,K]:

If the value of fr is 1 in example eq then: air→dqi
If the value of fr is 0 in example eq then : air→¬dqi

5 SOFT: For each positive example eq, we have 2H constraints for
classifying examples correctly:

¬dq1 ∧ ¬d
q
2∧ ⋅ ⋅ ⋅ ∧ ¬d

q
H−1 ∧ ¬d

q
H → c1

¬dq1 ∧ ¬d
q
2∧ ⋅ ⋅ ⋅ ∧ ¬d

q
H−1 ∧ dqH → c2

. . .

dq1 ∧ dq2∧ ⋅ ⋅ ⋅ ∧ dqH−1 ∧ dqH → c2H

(4)

6 SOFT: The same idea applies for negative examples (with ¬cj)
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Learning via Combinatorial Optimisation

Experimental Study

15 datasets with different sizes and distributions from CP4IM
https://dtai.cs.kuleuven.be/CP4IM/datasets/

15 minutes time limit for the loadra solver
https://github.com/jezberg/loandra

How does the MaxSAT model compares to OODG ?

How does the MaxSAT model compares to decision tree models ?

How to tackle scalability?
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Learning via Combinatorial Optimisation

MaxSAT Models vs. The Heuristic Approach OODG in
Training

Figure 9: MaxSAT Model vs. OODG : Better Training Accuracy
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Learning via Combinatorial Optimisation

MaxSAT Models vs. The Heuristic Approach OODG in
Testing

Figure 10: MaxSAT Models vs. OODG in Testing: Better Generalisation
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Learning via Combinatorial Optimisation

MaxSAT BDD vs. MaxSAT Decision Tree Models

Figure 11: Lighter Encoding Size
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Learning via Combinatorial Optimisation

Scalability

A simple way to tackle scalability is to model the problem on a
subset of features

Pre-Processing using CART to select a subset of (important)
features F
Solve the problem using only F
Eventually a sampling of the examples can be used to improve
scalability
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CART, MaxSAT BDD, and Heuristic MaxSAT(1)

Figure 12: Generalisation
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CART, MaxSAT BDD, and Heuristic MaxSAT(2)

Figure 13: Optimality
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CART, MaxSAT BDD, and Heuristic MaxSAT(3)

Figure 14: Scalability
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Conclusions

We proposed exact and heuristic models for learning BDDs thanks
to the notion of beads and the flexibility of MaxSAT

The proposed approach outperforms the existing heuristic
approach on many levels (generalisation and proofs of optimality)

The models that we propose are orders of magnitude lighter than
similar models for decision trees

Our propositions are competitive to state-of-the art decision tree
models in terms in generalisation however, they avoid
fragmentation and redundancy

The proposed models are highly flexible to handle different
constraints such as the height, specific features restrictions, as well
as counting constraints (that might be useful to meet specific
requirements such as fairness and balanced predictions, . . . )
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Related Team Work

Hu et al. ((2022)) Optimizing Binary Decision Diagrams with
MaxSAT for classification. Hu et al., AAAI’22

Hu et al. ((2020)) Learning Optimal Decision Trees with MaxSAT
and its Integration in AdaBoost. Hu et al., IJCAI’20
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Take Away Messages

We have several tools in declarative combinatorial solving that can
be used to address many aspects of machine learning

We live in an exciting research area where two ‘orthogonal’
computing approaches are helping each other

Modern decision making problems require both combinatorial and
learning reasoning

The challenges are mainly related to formulation and scalability
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Thank you!

The references mentioned in the slides are not exhaustive. They
are given as examples

The work presented here would not be possible without the
following amazing researchers (given in a lexicographical order)

Ulrich Aı̈vodji
Martin C. Cooper
Julien Ferry,
Sébastien Gambs
Emmanuel Hebrard
Hao Hu
Marie-José Huguet
Alexey Ignatiev
João Marques-Silva
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Thank you!
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Appendix: Beads and BDDs: An Example

Consider the sequence [x1, x2, x3] with 01100110

01100110 is not a bead, so x1 is discarded and
0110 is considered on the sequence [x2, x3]

0110 is a bead, therefore x2 is used as a root
node

01 and 10 are treated separately on the sequence
[x3]

01 is a bead, therefore a node x3 is created and
an edge (labelled with 0) from x2 to this node is
created

10 is a bead, therefore a node x3 is created and
an edge (labelled with 1) from x2 to this node is
created

Finally, two beads are left ( 1 and 0) and their
correspondent nodes are created similarly
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