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Tough Decision, Nevertheless I Have a Taste

https://www.flickr.com/photos/160866001@N07/49857560608

2 / 19

https://www.flickr.com/photos/160866001@N07/49857560608


Context

The variables are well defined

The constraints are given

The objective function is unknown: The user is non-expert in optimisation, aesthetic
objective functions, dynamic environment, ..

The user is able to rank the solutions according to her preferences

Due to the exponential number of solutions, only a subset of solutions is iteratively
proposed to the user
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Interactive Constraint Programming

A new research area ?

It dates back to 1988 (before?) with the notion of dynamic CSPs Dechter and
Dechter [1988]

A lot of developments since then and in particular in the past decade due to the
proliferation of its applications in the real word

Modern prescriptive decision making relies heavily on data, feedback loops, machine
learning, and flexible solvers
Different types of interactions:
▶ Problem definition
▶ Parameters approximation
▶ Evolution of the model
▶ Emerging Patterns
▶ Explanations
▶ . . .
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Related Work (Non Exhaustive)

Dynamic Constraint-Networks (Dechter and Dechter [1988])

The Inductive Constraint Programming Loop (Bessiere et al. [2016])

Predict+optimise (Demirovic et al. [2019])

Constraint acquisition (Bessiere et al. [2017])

Specific classes of objective functions Toffano et al. [2022]; Benabbou and Lust [2019]

. . .
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Our Framework
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Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Problem Definition

Initially, a set of solutions S is sampled

A very limited number of interactions with the user is allowed

At each iteration, the user is given a subset of solutions of S to rank

In the first iteration, two random solutions are given to the user to compare

Then at each iteration i , one additional solution is proposed. The user updates its
ranking accordingly

The purpose is to find the most preferred solutions in S within a bounded number of
interactions

7 / 19



Framework

Let Si be the set of solutions that are ranked at iteration i

The preferences manager build a ML model that predicts the ranking of the solutions
in S by using Si as a training data

A solution with the best predicted rank is then proposed to the user at iteration i + 1

There is a Problem!
Let [1..k] be the labels associated to the solutions in Si

A solution that is better than all the solutions in Si must have a label k + 1.

How does one build a model that predicts a label that is not used in the training ?
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Straightforward Approach
One can build a model for each label l ∈ [1..k] to predict whether a given solution
has label l

Weakness: This approach can be useful to predict solutions with different labels
than [1..k]. However, it does not capture the notion of preferences

Proposed Approach
By reasoning about the order between the solutions instead of the ranking, the
prediction model learns what makes a solution better than another

We propose to build a prediction model (denoted by O) that takes as input a couple
(s1, s2) and outputs 1 is s1 is better than s2, −1 if s1 is worse than s2, and 0 if they
have the same rank
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The Proposed Approach

At each iteration, the training dataset is the set of all possible couples of solutions in
Si

The labelling is inferred by the preferences of the user

Once O is built, one might use different strategies to pick a new solution

Strategy 1: pick a new solution that is predicted (according to O) to be better than
most of the solutions that are already proposed. That is, one that maximizes∑

s′∈Si
O(s, s ′).

Strategy 2: pick a new solution that is predicted to be better than most of the
solutions that are not proposed. That is, one that maximizes

∑
s′∈S\Si

O(s, s ′).

. . .
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Tough Challenge

If O is a valid order then:

∀s1, s2,O(s1, s2) = −O(s2, s1)

There is a simple trick: train O only on couples that are ordered lexicographically.
Then use the following prediction rule to answer the question “Is s1 better than s2 ?"

▶ If s1 <lex s2 then return O(s1, s2)
▶ Otherwise, return −O(s2, s1)
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Experimental Study
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Preliminary Experimentations

Stable Matching: Decision Version
Two sets of agents (men, women)

Each woman ranks the men in a strict order of preferences

Each man ranks the women in a strict order of preferences

The purpose to find a complete matching M such that there exists no pair of agents
that prefer each other to their partners in M

Objective Function
Let M be a stable matching

Let Weightw be the sum of the ranks of each woman’s partner in M

Let Weightm be the sum of the ranks of each man’s partner in M

Balanced stable matching: minimize max(Weightw ,Weightm)
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Experimental Setup

Instances size: {50, 60, 70}
Five random instances per size. Each of which has more than 60 solutions

For each instance, five simulations are conducted

Each simulation uses a different set of random solutions of size 40

The number of iterations is bounded to 10

We consider the worst possible scenario where the first two solutions are the worst
among the sampled solutions

We use decision trees as prediction models. We make sure that O is a perfect tree at
each iteration

The preferences manager in implemented in Python. It uses the latest version of
CP-Optimizer and scikit-learn
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Evaluation of Instances of Size 50
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Evaluation of Instances of Size 60
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Evaluation of Instances of Size 70
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Conclusion

New framework for interactive CP

The interactions with the user are limited

Only ranking queries

No restriction on the objective function

Flexible to be used in multiple scenarios

A lot to explore

. . .
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Thank you!
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