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Context

Two Facets of Trust in Rule-based Models and Explanations
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Redundancy
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Redundancy

Attribute
Clump Thickness

1 1-10
2 UnformiyofCellsze 1-10
. . 3 Uniformity of Cell Shape 1 - 10
4 Marginal Achesion 1-10
No  —— T 5 Single Epithelial Gell Size 1 - 10
Hnie3> 157> 6 Bare Nuclel i-10
7 Biand Chromatin 1-10
8 Normal Nucleoli 1-10
T 9 Mioses 1-10
aans- 17 Diagnosis (Output) T

STy

Example Interpretable Rules Induced by MediBoost:

A3 Uniformity of Cell Shape < 1.0 A A2 Uniformity of Cell Size > 3.0 A AT Bland Chromatin 3.0 = predict benign

A3 Uniformity of Cell Shape > 1.0 A A6 Bare Nuclei < 1.0 A A2 Uniformity of Cell Size 3.0 = predict benign
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Redundancy

Attribute Value
@ 1 Clump Thickness 1-10
2 Uniformity of Cell Size  1-10
Yos —> 3 Uniformity of Cell Shape 1- 10
4 Marginal Adhesion 1-10
No  —— 5 Single Epithelial Cell Size 1-10
6 Bare Nuclei 1-10
7 Bland Chromatin 1-10
8 Normal Nucleali 1-10
» 9 Mitoses 1-10
it 6> 117 Diagnosis (Output) S

1 malign

Example Interpretable Rules Induced by MediBoost:

A3 Unifermity of Cell Shape < 1.0 A A2 Uniformity of Cell Size > 3.0 A A7 Bland Chromatin <3.0 = predict benign
A3 Uniformity of Cell Shape > 1.0 A A6 Bare Nuclei <1.0 A A2 Uniformity of Cell Size 3.0 = predict benign
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Overlap
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Overlap

e Adult dataset: The task is to predict whether an individual’'s annual income
exceeds $50,000.
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e Adult dataset: The task is to predict whether an individual’'s annual income
exceeds $50,000.
o lllustrative examples of Anchor explanations, produced by a neural network
trained on the Adult dataset:
o Age < 28 A Occupation = Other A CapitalGain = 0 A\ CapitalLoss = 0 A Workclass =

Private — 0
e MaritalStatus = Married-civ-spouse A Education = Masters — 1
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e Adult dataset: The task is to predict whether an individual’'s annual income
exceeds $50,000.

o lllustrative examples of Anchor explanations, produced by a neural network
trained on the Adult dataset:

o Age < 28 A Occupation = Other A CapitalGain = 0 A\ CapitalLoss = 0 A Workclass =
Private — 0
e MaritalStatus = Married-civ-spouse A Education = Masters — 1

e In such cases, the resulting explanations may lack reliability and cannot be
considered fully trustworthy.
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Contributions

We answer the following questions:
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Contributions

We answer the following questions:

e |s it possible to develop a general-purpose approach for eliminating redundancy in
rule-based models and explanations under background constraints?
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e |s it possible to develop a general-purpose approach for eliminating redundancy in
rule-based models and explanations under background constraints?

e What is the relationship between rule succinctness and formal explainability?
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Contributions

We answer the following questions:

e |s it possible to develop a general-purpose approach for eliminating redundancy in
rule-based models and explanations under background constraints?

e What is the relationship between rule succinctness and formal explainability?

e Can we identify and characterize negative overlaps between rules or explanations
in the feature space, subject to background constraints?
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Contributions

We answer the following questions:

e |s it possible to develop a general-purpose approach for eliminating redundancy in
rule-based models and explanations under background constraints?

e What is the relationship between rule succinctness and formal explainability?

e Can we identify and characterize negative overlaps between rules or explanations
in the feature space, subject to background constraints?

e How can these ideas be effectively implemented in practice?
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Contributions

We answer the following questions:

e |s it possible to develop a general-purpose approach for eliminating redundancy in
rule-based models and explanations under background constraints?

e What is the relationship between rule succinctness and formal explainability?

e Can we identify and characterize negative overlaps between rules or explanations
in the feature space, subject to background constraints?

e How can these ideas be effectively implemented in practice?

e Do well-known tools suffer from redundancy and overlap, and to what extent?
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Background

Propositionnnal Logic
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Background

Propositionnnal Logic

e Let F; and F, be two Boolean formulas. F; = F; if every solution of F is a
solution of F»

On Trustworthy Rule-Based Models and Explanations Mohamed Siala



Background

Propositionnnal Logic

e Let F; and F, be two Boolean formulas. F; = F; if every solution of F is a
solution of F»

e There are very efficient tools that can be used to check if /1 = F,. They are
called SAT (Boolean Satisfiability Solvers).
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Rule-Based Models

e We consider models that can be represented as a set of (unordered) rules together
with background constraints B

Examples include decision trees, decision diagrams, random forests, boosted trees,
decision sets, among others

We use M to denote a model

A literal is a unary relation on a feature. For instance (size > 20) is a literal.

A rule R is denoted by L = o, where L is a conjunction of literals and o is a
prediction outcome
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Background constraints 3

o (salary > 0) <> (age > 18)

o (size = 140) — (size > 120)

o (weight > 90) — (weight > 85)
(weight > 85) — (weight > 80)

The Model
e Ry = (salary > 0) A (size # 140) A (age > 10) A (color = blue) A (weight >
80) — 1
e Ry = (salary > 0) A (size = 140) = 1
e R3 = (salary > 0) A (weight > 90) — 1
o Ry = (size > 120) A (weight < 85) = 0
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Theoretical Contributions On Overlap and Redundancy
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Overlap

e Given two rules R; and R», do R; and R, overlap?
e Can we find all negative overlaps?
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Figure 1: lllustration of overlap between two rules R; and R». Points are inputs in feature
space that satisfy 5. Blue: fire Ry; Red: fire R».
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Figure 1: lllustration of overlap between two rules R; and R». Points are inputs in feature
space that satisfy 5. Blue: fire Ry; Red: fire R».

Lemma (Overlap Check)

Two rules Ry and R> overlap iff B A Ly A Ly is satisfiable.
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Redundancy

e Rule redundancy
e Literal redundancy

e Local redundancy
e Global redundancy
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Rule Redundancy
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Rule Redundancy

Definition (Rule Redundancy)
A rule R is redundant in M iff M \ R is equivalent to M
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Rule Redundancy

Definition (Rule Redundancy)
A rule R is redundant in M iff M \ R is equivalent to M

Notations

e A(0): set of rules with outcome o
e Suppose that A(o) = {R1,..., R} U{R}
e Denote by Rest =L; V...V L,
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Rule Redundancy

Definition (Rule Redundancy)
A rule R is redundant in M iff M \ R is equivalent to M

Notations

e A(0): set of rules with outcome o
e Suppose that A(o) = {R1,..., R} U{R}
e Denote by Rest =L; V...V L,

Proposition (Rule Redundancy Check)
A rule R is redundant in M iff B\ L |= Rest
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Literal Redundancy
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Literal Redundancy

Notation

e Let / € L. We denote by M, the model where / is removed from L

On Trustworthy Rule-Based Models and Explanations Mohamed Siala



Literal Redundancy

Notation

e Let / € L. We denote by M, the model where / is removed from L

Definition (Literal Redundancy)

A literal | is redundant in L iff / € L and M, is equivalent to M.
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Local Redundancy

Example

e Ry = (salary > 0) A (size # 140) A (age > 10) A (color = blue) A (weight >
80) = 1

o (age > 10) is locally redundant in R;.
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Local Redundancy

Example

e Ry = (salary > 0) A (size # 140) A (age > 10) A (color = blue) A (weight >
80) = 1

o (age > 10) is locally redundant in R;.

Lemma (Local Redundancy)

Ifl € Land BAL\{l} =1 then | is redundant in L.

On Trustworthy Rule-Based Models and Explanations Mohamed Siala 15/23



Global Redundancy: Example

o R = (sa/ary > 0) A (size # 140) A (age > 10) A (color = blue) N\ (weight >

o R, = (sa/ary > 0) A (size = 140) = 1

(size # 140) is globally redundant in Ry:

o Flip(size+140) = (salary > 0) A (size = 140) A (age > 10) A (color =
blue) A (weight > 80)

® B A Flip(size140) = (salary > 0) A (size = 140)
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Global Redundancy
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Global Redundancy

Notation

o Flip; = LU {~/}\ {/}
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Global Redundancy

Notation

o Flip; = LU {~/}\ {/}

Lemma (Global Redundancy)

If I'is not locally redundant in L and B A Flip, |= Rest, then | is redundant in L
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Experimental Results: Redundancy
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Experimental Setting

e Scikit-learn and Interpretable Al for learning classification and regression decision
trees

e Boomer to learn ensembles of boosted rules

e Orange v3 to learn decision sets for classification

e Diverse datasets from UCI ML repository with diverse characteristics

e Background constraints B that enforce domain coherence between the features.
e SAT calls with PySAT

e One-hour time limit.

e All experiments ran on Apple M1 Pro (32 GB)
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Frequency of Redundancies

Figure 2: Frequency of Literal Redundancy. PL (respectively PG) is the percentage of locally
(respectively globally) redundant literals
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Experimental Results: Overlaps
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Overlapping Anchor Explanations

H Learner ‘ Dataset H Train ‘ Test ‘ # Explanations ‘ # Overlap H
xgboost recidivism || 92.39 | 74.33 333 87
randomforest | recidivism || 93.52 | 75.46 321 65
logistic recidivism || 62.59 | 60.00 196 735
nn recidivism || 87.47 | 71.49 341 150
xgboost lending 90.10 | 82.89 260 384
randomforest | lending 91.25 | 83.60 278 207
logistic lending 82.56 | 83.51 50 54
nn lending 88.00 | 82.54 159 66
xgboost adult 90.35 | 84.26 565 3195
randomforest | adult 93.52 | 85.60 558 2534
logistic adult 83.00 | 82.98 378 2788
nn adult 92.47 | 83.62 597 3212
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Conclusions
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Conclusions

Contributions

1. Introduce a new approach to identifying and removing redundant information in
rule based models under background constraints

2. Establish a dichotomy in the nature of redundancy
3. Propose novel algorithms for mining overlapping rules and explanations

4. Provide empirical insights:

e Redundancy is widespread in commonly used tools
e Overlapping rules occur frequently
e Anchor explanations often lack trustworthiness
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What | didn’t have time to cover

How to generate the background constraints

The impact of the background constraints

The computational overhead

The quality of Overlap

The correlation between redundancy and prediction quality

The relationship with formal explainability (abductive explanations)
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Conclusions

Future Research
e Develop stronger benchmarks for background (user-defined) constraints. If you
know examples, please share with us!
e Incorporate distance metrics into regression tasks

e Why do Boomer and tree ensembles leverage overlap more effectively than
Orange?
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