On Trustworthy Rule-Based Models and Explanations

Mohamed Siala, Jordi Planes, and Joao Marques-Silva

September 18, 2025

LAAS CNRS & INSA Toulouse University of Lleida ICREA

Context

Two Facets of Trust in Rule-based Models and Explanations

SCIENTIFIC REPORTS

OPEN MediBoost: a Patient Stratification **Tool for Interpretable Decision** Making in the Era of Precision Medicine

Received: 09 August 2016 Accepted: 02 November 2016 Published: 30 November 2016

Gilmer Valdes^{1,2}, José Marcio Luna¹, Eric Eaton³, Charles B. Simone II², Lyle H. Ungar³ & Timothy D. Solberg^{1,2}

• Adult dataset: The task is to predict whether an individual's annual income exceeds \$50,000.

- Adult dataset: The task is to predict whether an individual's annual income exceeds \$50,000.
- Illustrative examples of Anchor explanations, produced by a neural network trained on the Adult dataset:
 - $Age \le 28 \land Occupation = Other \land CapitalGain = 0 \land CapitalLoss = 0 \land Workclass = Private \implies 0$
 - $MaritalStatus = Married-civ-spouse \land Education = Masters \implies 1$

- Adult dataset: The task is to predict whether an individual's annual income exceeds \$50,000.
- Illustrative examples of Anchor explanations, produced by a neural network trained on the Adult dataset:
 - $Age \le 28 \land Occupation = Other \land CapitalGain = 0 \land CapitalLoss = 0 \land Workclass = Private \implies 0$
 - $MaritalStatus = Married-civ-spouse \land Education = Masters \implies 1$
- In such cases, the resulting explanations may lack reliability and cannot be considered fully trustworthy.

We answer the following questions:

• Is it possible to develop a general-purpose approach for eliminating redundancy in rule-based models and explanations under background constraints?

- Is it possible to develop a general-purpose approach for eliminating redundancy in rule-based models and explanations under background constraints?
- What is the relationship between rule succinctness and formal explainability?

- Is it possible to develop a general-purpose approach for eliminating redundancy in rule-based models and explanations under background constraints?
- What is the relationship between rule succinctness and formal explainability?
- Can we identify and characterize negative overlaps between rules or explanations in the feature space, subject to background constraints?

- Is it possible to develop a general-purpose approach for eliminating redundancy in rule-based models and explanations under background constraints?
- What is the relationship between rule succinctness and formal explainability?
- Can we identify and characterize negative overlaps between rules or explanations in the feature space, subject to background constraints?
- How can these ideas be effectively implemented in practice?

- Is it possible to develop a general-purpose approach for eliminating redundancy in rule-based models and explanations under background constraints?
- What is the relationship between rule succinctness and formal explainability?
- Can we identify and characterize negative overlaps between rules or explanations in the feature space, subject to background constraints?
- How can these ideas be effectively implemented in practice?
- Do well-known tools suffer from redundancy and overlap, and to what extent?

Propositionnnal Logic

Propositionnnal Logic

• Let F_1 and F_2 be two Boolean formulas. $F_1 \models F_2$ if every solution of F_1 is a solution of F_2

Propositionnnal Logic

- Let F_1 and F_2 be two Boolean formulas. $F_1 \models F_2$ if every solution of F_1 is a solution of F_2
- There are very efficient tools that can be used to check if $F_1 \models F_2$. They are called SAT (Boolean Satisfiability Solvers).

Rule-Based Models

- ullet We consider models that can be represented as a set of (unordered) rules together with background constraints ${\cal B}$
- Examples include decision trees, decision diagrams, random forests, boosted trees, decision sets, among others
- ullet We use ${\mathcal M}$ to denote a model
- A literal is a unary relation on a feature. For instance (size > 20) is a literal.
- ullet A rule R is denoted by $L\Longrightarrow o$, where L is a conjunction of literals and o is a prediction outcome

Example

Background constraints \mathcal{B}

- $(salary > 0) \leftrightarrow (age \ge 18)$
- $(size = 140) \rightarrow (size > 120)$
- $(weight > 90) \rightarrow (weight \ge 85)$
- $(weight \ge 85) \rightarrow (weight > 80)$

The Model

- $R_1 = (salary > 0) \land (size \neq 140) \land (age > 10) \land (color = blue) \land (weight > 80) \implies 1$
- $R_2 = (salary > 0) \land (size = 140) \implies 1$
- $R_3 = (salary > 0) \land (weight > 90) \implies 1$
- $R_4 = (size > 120) \land (weight < 85) \implies 0$

Theoretical Contributions On Overlap and Redundancy

- Given two rules R_1 and R_2 , do R_1 and R_2 overlap?
- Can we find all negative overlaps?

Figure 1: Illustration of overlap between two rules R_1 and R_2 . Points are inputs in feature space that satisfy \mathcal{B} . Blue: fire R_1 ; Red: fire R_2 .

Figure 1: Illustration of overlap between two rules R_1 and R_2 . Points are inputs in feature space that satisfy \mathcal{B} . Blue: fire R_1 ; Red: fire R_2 .

Lemma (Overlap Check)

Two rules R_1 and R_2 overlap iff $\mathcal{B} \wedge L_1 \wedge L_2$ is satisfiable.

- Rule redundancy
- Literal redundancy
 - Local redundancy
 - Global redundancy

Definition (Rule Redundancy)

A rule R is redundant in \mathcal{M} iff $\mathcal{M}\setminus R$ is equivalent to \mathcal{M}

Definition (Rule Redundancy)

A rule R is redundant in \mathcal{M} iff $\mathcal{M} \setminus R$ is equivalent to \mathcal{M}

Notations

- $\Delta(o)$: set of rules with outcome o
- Suppose that $\Delta(o) = \{R_1, \dots, R_z\} \cup \{R\}$
- Denote by $Rest = L_1 \lor \ldots \lor L_z$

Definition (Rule Redundancy)

A rule R is redundant in \mathcal{M} iff $\mathcal{M} \setminus R$ is equivalent to \mathcal{M}

Notations

- $\Delta(o)$: set of rules with outcome o
- Suppose that $\Delta(o) = \{R_1, \dots, R_z\} \cup \{R\}$
- Denote by $Rest = L_1 \lor \ldots \lor L_z$

Proposition (Rule Redundancy Check)

A rule R is redundant in \mathcal{M} iff $\mathcal{B} \wedge L \models Rest$

Literal Redundancy

Literal Redundancy

Notation

• Let $l \in L$. We denote by \mathcal{M}_l the model where l is removed from L

Literal Redundancy

Notation

• Let $l \in L$. We denote by \mathcal{M}_l the model where l is removed from L

Definition (Literal Redundancy)

A literal I is redundant in L iff $I \in L$ and \mathcal{M}_I is equivalent to \mathcal{M} .

Local Redundancy

Example

- $R_1 = (salary > 0) \land (size \neq 140) \land (age > 10) \land (color = blue) \land (weight > 80) \implies 1$
- (age > 10) is locally redundant in R_1 .

Local Redundancy

Example

- $R_1 = (salary > 0) \land (size \neq 140) \land (age > 10) \land (color = blue) \land (weight > 80) \implies 1$
- (age > 10) is locally redundant in R_1 .

Lemma (Local Redundancy)

If $I \in L$ and $\mathcal{B} \wedge L \setminus \{I\} \models I$ then I is redundant in L.

Global Redundancy: Example

- $R_1 = (salary > 0) \land (size \neq 140) \land (age > 10) \land (color = blue) \land (weight > 80) \implies 1$
- $R_2 = (salary > 0) \land (size = 140) \implies 1$
- ...

(size \neq 140) is globally redundant in R_1 :

- $Flip_{(size \neq 140)} = (salary > 0) \land (size = 140) \land (age > 10) \land (color = blue) \land (weight > 80)$
- $\mathcal{B} \wedge \mathit{Flip}_{(\mathit{size} \neq 140)} \models (\mathit{salary} > 0) \wedge (\mathit{size} = 140)$

Global Redundancy

Global Redundancy

Notation

• $\operatorname{Flip}_{I} = L \cup \{\neg I\} \setminus \{I\}$

Global Redundancy

Notation

• $\operatorname{Flip}_{I} = L \cup \{\neg I\} \setminus \{I\}$

Lemma (Global Redundancy)

If I is not locally redundant in L and $\mathcal{B} \wedge \mathrm{Flip}_I \models \mathsf{Rest}$, then I is redundant in L

Experimental Results: Redundancy

Experimental Setting

- Scikit-learn and Interpretable AI for learning classification and regression decision trees
- Boomer to learn ensembles of boosted rules
- Orange v3 to learn decision sets for classification
- Diverse datasets from UCI ML repository with diverse characteristics
- ullet Background constraints ${\cal B}$ that enforce domain coherence between the features.
- SAT calls with PySAT
- One-hour time limit.
- All experiments ran on Apple M1 Pro (32 GB)

Frequency of Redundancies

Figure 2: Frequency of Literal Redundancy. PL (respectively PG) is the percentage of locally (respectively globally) redundant literals

Experimental Results: Overlaps

Overlapping Anchor Explanations

Learner	Dataset	Train	Test	# Explanations	# Overlap
xgboost	recidivism	92.39	74.33	333	87
randomforest	recidivism	93.52	75.46	321	65
logistic	recidivism	62.59	60.00	196	735
nn	recidivism	87.47	71.49	341	150
xgboost	lending	90.10	82.89	260	384
randomforest	lending	91.25	83.60	278	207
logistic	lending	82.56	83.51	50	54
nn	lending	88.00	82.54	159	66
xgboost	adult	90.35	84.26	565	3195
randomforest	adult	93.52	85.60	558	2534
logistic	adult	83.00	82.98	378	2788
nn	adult	92.47	83.62	597	3212

Conclusions

Conclusions

Contributions

- 1. Introduce a new approach to identifying and removing redundant information in rule based models under background constraints
- 2. Establish a dichotomy in the nature of redundancy
- 3. Propose novel algorithms for mining overlapping rules and explanations
- 4. Provide empirical insights:
 - Redundancy is widespread in commonly used tools
 - Overlapping rules occur frequently
 - Anchor explanations often lack trustworthiness

What I didn't have time to cover

- How to generate the background constraints
- The impact of the background constraints
- The computational overhead
- The quality of Overlap
- The correlation between redundancy and prediction quality
- The relationship with formal explainability (abductive explanations)

Conclusions

Future Research

- Develop stronger benchmarks for background (user-defined) constraints. If you know examples, please share with us!
- Incorporate distance metrics into regression tasks
- Why do Boomer and tree ensembles leverage overlap more effectively than Orange?