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Context

This is an introductory course. Next year you will follow more
advanced courses (depending on your orientation)

You need basic knowledge regarding linear algebra, algorithms and
probability

I ask questions very often, so please be interactive

Feel free to stop me anytime. There is no stupid question!

Speak up if you spot a typo or an error. You might get bonus
points!!

The evaluation will be decided later. Most likely it will be based
on lecture questions and practical sessions

The course is articulated around three parts: introduction,
interpretable machine learning (myself), and neural networks
(Arthur Bit Monnot)
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Part 1: Introduction

Part 1: Introduction
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Part 1: Introduction Context

Context
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Part 1: Introduction Context

Figure 1: How to cycle? 1

1Image from https://en.wikipedia.org/wiki/Cycling
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Part 1: Introduction Context

Figure 2: How to teach a child animal recognition? 2

2Image from https://en.wikipedia.org/wiki/Global_biodiversity
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Part 1: Introduction Context

Figure 3: How to predict a player’s performance? 3

3Image from https://en.wikipedia.org/wiki
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Part 1: Introduction Context

Figure 4: Analysis of evolutionary biology based on DNA patterns 4

4Image from https://en.wikipedia.org/wiki/DNA
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Part 1: Introduction Context

Cycling: It needs a sequence of successful/unsuccessful trials!

Animal recognition: It does not make sense to show the picture of
every animal!

=⇒ Show some pictures per animal and let the child learn

Player performance: No straightforward formulae. Keep track of
its latest performances and predict accordingly

DNA clustering: Let the machine discover by itself the different
patterns.

That’s pretty much the philosophy of machine learning: feed the
computer some data, and let it learn by itself

Note 1: Some computational problems are simply not solvable in a
traditional way and need machine learning

Note 2: Machine learning is not always the solution! Consider for
instance basic arithmetic operations
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Part 1: Introduction Context

Examples of Machine Learning Applications [1]

Autonomous cars

Flying drones

Face recognition

Computer vision

Natural language processing

Music/movie recommendation

Dating apps

Friends recommendation

Weather prediction

Trading

. . .
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Part 1: Introduction Context

The Big Picture

It depends on the problem at hand and on the nature of data!
1 Labelled data:

The task of animal recognition is to predict the animal in a given
picture. The data (used to “train” the computer) is a set of pictures
and each picture is associated to an animal. In this case, the label
is a category
In trading, the task is to predict the price evolution of a given share
and the data is simply historical evolution of the share. In this case
the data is labelled with real numbers.

2 Unlabelled data: For instance, when using clustering to evaluate
the density of a population. The data can simply be a set of
coordinates with no labels.

3 Continuously updated data: The data is continuously updated
according to previous experiences: For instance, a robot that tries
to ride a bicycle learns how to bike by a sequence of trials

Mohamed Siala (Toulouse) INSA-Toulouse, IR Major May 31, 2022 13 / 95



Part 1: Introduction Context

Supervised/Unsupervised/Reinforcement Learning

Supervised Learning (Labelled data): Predict a function that
associates inputs to outputs based on historical data

Categorical labels (discrete values): Classification
Non-categorical labels (real numbers): Regression

Unsupervised Learning: The task is to figure out patterns
presented in the data (unlabelled data)

Reinforcement learning: learning from a series of rewards
/punishments

But also, depending on the problem, data could be both
labelled/non labelled, etc.. (semi-supervised learning)
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Part 1: Introduction Context

Figure 5: How to teach a child animal recognition? 5

Classification task

5Image from https://en.wikipedia.org/wiki/Global_biodiversity
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Part 1: Introduction Context

Figure 6: How to predict a player’s performance? 6

Regression task

6Image from https://en.wikipedia.org/wiki
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Part 1: Introduction Context

Figure 7: Analysis of evolutionary biology based on DNA patterns 7

Unsupervised learning (clustering) task

7Image from https://en.wikipedia.org/wiki/DNA
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Part 1: Introduction Context

Figure 8: How to cycle? 8

Reinforcement learning

8Image from https://en.wikipedia.org/wiki/Cycling
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Part 1: Introduction Supervised Machine Learning

Supervised Machine Learning
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Part 1: Introduction Supervised Machine Learning

Supervised Machine Learning: The Basics

We focus in this course on Supervised ML

Examples of applications

Tumor detection: The data is a collection of brain scans. Each scan
is associated with a label indicating the type of tumor
=⇒ Classification
Credit score: The data is a collection of clients profiles (age, salary,
genre (?), job, . . . ) with a positive or negative feedback
=⇒ Binary classification
Precipitation prediction: (loosely speaking) the data is a collection
of sequential weather conditions and the purpose is to predict the
Precipitation chance (real value)
=⇒ Regression
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Part 1: Introduction Supervised Machine Learning

Problem Definition [2]

Given a historical data (training set) in the form of input-output
examples: {(x1, y1), . . . (xn, yn)} where xi is an input, yi is the
output of xi drawn from an unknown function f

Find a function fh (called a hypothesis or model) that
approximates the true function f

The approximation criterion can be defined in different ways. We
can consider it as a function minimizing some error.
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Part 1: Introduction Supervised Machine Learning

Training Phase

The function fh is constructed via a training algorithm

The training algorithm depends on the hypothesis space

Examples of hypothesis space (family of functions) include
polynomial functions, trigonometry functions, decision trees,
decision lists, neural networks, . . .

Mohamed Siala (Toulouse) INSA-Toulouse, IR Major May 31, 2022 22 / 95



Part 1: Introduction Supervised Machine Learning

Testing Phase

The evaluation of the constructed hypothesis (or model) is done
via a set of unseen examples called testing set

The testing set is usually taken randomly from the initial data.
However, it shouldn’t be part of the training set

The common way is to split the initial data into a training and
testing sets randomly
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Part 1: Introduction Supervised Machine Learning

Model Evaluation: Classification

Training accuracy: percentage of training examples that are well
predicted

Testing accuracy: percentage of testing examples that are well
predicted

The concept of generalisation is precisely the quality of testing
accuracy
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Part 1: Introduction Supervised Machine Learning

Classification Evaluation: The Confusion Matrix

Accuracy alone hinders the way predictions are made. Model
evaluation needs more refinement

Consider binary classification (positive/negative classes) with 80%
testing accuracy

80% seems good, however, a deeper investigation shows that most
of negative examples are wrongly predicted! This shows a bias in
the model (biased towards positive examples)

The purpose of the confusion matrix is precisely to have a refined
evaluation

In the case on m classes, the matrix is of dimension m×m where
M [i][j] is the number of examples of class i that are predicted to
be as the class b

The model bias can be easily seen: For instance, one can answer
statistical queries such as: is the error evenly distributed? to
which class the model is likely to predict? . . .
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Part 1: Introduction Supervised Machine Learning

The Confusion Matrix in the Case of Binary
Classification

A positive class and a negative class

The confusion matrix is of dimension 2× 2

True Positive Rate (TP rate): the likelihood that a positive
example is well classified

False Positive Rate (FP rate): the likelihood that a positive
example is wrongly classified

True Negative Rate (TN rate): the likelihood that a negative
example is well classified

False Negative Rate (FN rate): the likelihood that a negative
example is wrongly classified
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Part 1: Introduction Supervised Machine Learning

The Covid Example (1)

Assume that we have a prediction model with 85% accuracy

100 individuals: 70 positives and 30 negatives

The confusion matrix:

Positive Negative

Positive 65 5
Negative 10 20

TP rate is 65/70 = 93% ; FP rate is 5/70 = 7%

TN rate is 20/30 = 66% ; FN rate is 10/30 = 33%

Positive individuals has 93% chance to be correctly predicted

Negative individuals has 66% chance to be correctly predicted
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Part 1: Introduction Supervised Machine Learning

The Covid Example (2)

The confusion matrix:

Positive Negative

Positive 65 5
Negative 10 20

TP rate is 65/70 = 93% ; FP rate is 5/70 = 7%
TN rate is 20/30 = 66% ; FN rate is 10/30 = 33%
Positive individuals has 93% chance to be correctly predicted
Negative individuals has 66% chance to be correctly predicted

What is the probability for someone who tested positive to be
truly positive? = 65/(65 + 10) = 86%

What is the probability for someone who tested negative to be
truly negative? = 20/(5 + 20) = 80%
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Part 1: Introduction Supervised Machine Learning

Toy Example: DTs to Predict The Likelihood of Animal
Extinction

Big Size Carnivore Seasonal Solitary Extinct
Reproduction

0 1 0 1 yes

1 0 0 1 yes

0 0 0 1 no

1 1 1 0 no

0 0 1 0 yes

Solitary?

YES

+

NO

Carnivore?

YES

+

NO

−

Seasonal Reproduction?

YES

Solitary?

YES

+

NO

−

NO

Large Size?

YES

−

NO

+

Tabular data

Hypothesis space: Decision trees

Left tree: accuracy 2/5

Right tree: accuracy 2/5
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Part 1: Introduction Supervised Machine Learning

Model Evaluation: Regression

In the case of classification, a simple way to define error is to
count the number of examples wrongly predicted

How about regression?

Take the example of estimating the price of a house based on the
surface and the distance to the city.

Suppose that the real price of a house is 1 Million and the model
predicted 999k.

Obviously it’s not a correct prediction, however, it seems close
enough! But how close?

We need an error function that take into account a notion of
distance between true values and predicted values
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Part 1: Introduction Supervised Machine Learning

Model Evaluation: Regression

Two well known functions: Mean Absolute Error(MAE) and
Mean Square Error(MSE) (or Root Mean Square Error(RMSE))

Consider a dataset with n examples where y is the vector of the
true values and ŷ is the vector of predicted values:

MAE =
1

n

∑
|yi − ŷi|

MSE =
1

n

∑
(yi − ŷi)

2

RMSE =
√
MSE
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Part 1: Introduction Supervised Machine Learning

Beyond Traditional Evaluations: Crucial Predictions

Take the example of tumor detection

Predicting the non-presence of a tumor for a patient that has a
tumor is a serious problem

How to deal with such situation?

For instance, one can add a weight on the mis-classification error
as follows: the cost of mis-classifying a patient with a tumor is 5
times the cost of mis-classifying a patient without a tumor

In this case the objective function is slightly different from the
standard accuracy (weighted sum)
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Part 1: Introduction Supervised Machine Learning

Computational Hardness

Out of these three questions, which one is the hardest and which one is
the easiest (computationally)?

1 Build a perfect decision tree (a tree that classifies every example
correctly) 100% accuracy ?

2 Build the best decision tree within a height h ?
3 Build a perfect decision tree with a minimum height ?

Question 1 is the easiest: we can always develop children to
classify every example
Let k be the number of features; f(n) be the complexity of
Question 2 and g(n) be the complexity of Question 3
g(n) = O(k × f(n)): We can solve Question 3 by solving Question
2 iteratively by increasing/decreasing the height
Different objective functions can be defined (i.e., the training
problem itsetf can have different definitions)
The definition of the objective function with the hypothesis space
has an impact on the complexity of training
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Part 1: Introduction Supervised Machine Learning

To summarize

Supervised Learning: The data is labelled

Each example is defined by a sequence of values (of the different
attributes/features) with an output

Training vs. Testing sets (disjoints)

Generalisation: when the model generalizes well on unseen data

Regression: Supervised Learning with real values

Classification: Supervised Learning with discrete values (classes)

Regression evaluation: accuracy in terms of minimum error (Mean
Absolute Error, Root Mean Square Error)

Classification evaluation: accuracy in terms of examples well
classified but also the confusion matrix (it can show some bias)

Depending on the problem at hand, the objective function can
have have different forms

The way the optimisation problem is defined impacts its
computational complexity

Mohamed Siala (Toulouse) INSA-Toulouse, IR Major May 31, 2022 34 / 95



Part 1: Introduction Supervised Machine Learning

Questions & Exercises

Big Size Carnivore Seasonal Solitary Extinct
Reproduction

0 1 0 1 yes

1 0 0 1 yes

0 0 0 1 no

1 1 1 0 no

0 0 1 0 yes

Solitary?

YES

+

NO

Carnivore?

YES

+

NO

−

Seasonal Reproduction?

YES

Solitary?

YES

+

NO

−

NO

Large Size?

YES

−

NO

+

Find a perfect tree

Find a perfect tree with a minimum weight

Find a best tree with height 2
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Part 1: Introduction Deeper Evaluations

Deeper Evaluations
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Part 1: Introduction Deeper Evaluations

Overfitting, Underfitting, and Goodfitting
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Part 1: Introduction Deeper Evaluations

The Housing Prices Example

This data includes some noise. That is, points that are not correctly
collected (which is often the case in real applications)
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Part 1: Introduction Deeper Evaluations

The Housing Prices Example: The Good

We can make an analogy to a smart student who has a good
understanding of a lecture
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Part 1: Introduction Deeper Evaluations

The Housing Prices Example: The Bad (Overfitting)

We can make an analogy to the student who ”learns” the lecture
mechanically without a real understanding.
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Part 1: Introduction Deeper Evaluations

The Housing Prices Example: The Ugly (Underfitting)

We can make an analogy to a lazy student who barely remember the
lecture without any understanding
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Part 1: Introduction Deeper Evaluations

The Housing Prices Example: All Together
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Part 1: Introduction Deeper Evaluations

Overfitting, Underfitting, and a Good Fit

Overfitting happens when the model tries to squeeze everything in
including noise without an ”intuitive understanding of the data”

Underfitting happens when the model performs badly on the
training and testing data (no real learning).

A good fit happens when the model approximates well the true
distribution without being disturbed by noise (good generalisation)
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Part 1: Introduction Deeper Evaluations

Overfitting with Decision Trees as an Example
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Part 1: Introduction Deeper Evaluations

Overfitting with Decision Trees as an Example

The longer the tree, the better the training accuracy gets,
however, this is not necessarily the case for the testing accuracy

Testing accuracy increases at the beginning until a certain value
(depth = 7), the it decreases afterwards

This happens because with longer trees, the model can classify
correctly more examples in the training set, however, this includes
noise.
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Part 1: Introduction Deeper Evaluations

Overfitting Based on the Complexity of the Model

When the model is too simple, there is a risque of underfitting
When the model is too complex, there is a risque of overfitting
We need a Model that is somehow in between
ML libraries offer parameters for regulation to avoid
overfitting/underfitting
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Part 1: Introduction Deeper Evaluations

Training Algorithms Evaluation

Suppose that we have a number of training algorithms for a given
hypothesis space

How to choose the best?

Generalisation should be evaluated a number of random splits

Also the confusion matrices can be used for evaluation

A common way is to use the k−fold cross validation:
1 Split the data into k folds
2 Perform the training k times. At each iteration, a different fold is

chosen as a testing set and the rest is used for training
3 Typical values for k are 5 and 10

Mohamed Siala (Toulouse) INSA-Toulouse, IR Major May 31, 2022 47 / 95



Part 1: Introduction Deeper Evaluations

Overcome Overfitting

How to avoid overfitting?

The testing set is inaccessible at the moment of training

We can sacrifice a part of the training set as a ’validation set’ to
evaluate the generalisation of the model.

Basically, the training set has a subset for training and a subset
for validation (evaluation)

A common way is to use k−cross validation on the training set to
overcome overfitting

Also, we can restrict the hypothesis space with simple models
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Part 1: Introduction Deeper Evaluations

Complexity/Quality Tradeoff

Training algorithms have resources costs: memory and runtime
(we will see later how to train decision trees/linear functions)

For instance, training quadratic functions is much harder
(computationally) than training linear functions

However, may be a quadratic function is a better fit for the data
at hand

There is a trade-off between the quality of predictions and the
model complexity

For example training a tree with depth 5 is much faster than
training a tree of depth 9, but in terms of training quality, trees of
depth 9 are better. However, trees with depth 9 might overfit

Most ML libraries offer the possibility to control the complexity
with a regularization parameter
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Part 1: Introduction Deeper Evaluations

Ockham’s Razor Principle

In the previous example, we have two different trees with the same
accuracy

Which tree to choose?

Hard to answer without specific requirements

Ockham’s Razor Principle9: pick the simplest!

Simplicity is also hard to define

In decision trees, simplicity could be the depth, the number of
features, a combination of both, etc

When using polynomials (as a hypothesis space), lower degrees
seem to be simpler

In other cases it is very hard to define simplicity

9Philosopher https://en.wikipedia.org/wiki/William_of_Ockham
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Part 1: Introduction Deeper Evaluations

Complexity/Quality/Overfitting Tradeoff

The bottom line

There are fine lines between:

overfitting/underfitting
hard/easy training algorithms
complex/simple models

Complex models can be computationally hard, however have
better flexibility (some parameters can be turned off) and might
have better quality

Complex models might overfit

Simple models might underfit

Ideally, we look for a hypothesis that is ‘easy’ to compute and
simple enough to be a good fit
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Interpretability

Part 2: Interpretability
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Interpretability Motivation

Motivation

Mohamed Siala (Toulouse) INSA-Toulouse, IR Major May 31, 2022 53 / 95



Interpretability Motivation

The COMPAS Tool
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Interpretability Motivation

Increasing Number of Real Life and Social AI
Applications
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Interpretability Motivation

AI: Increasing Number of Real Life Applications Of
Machine Learning

The diverse applications of AI raised many ethical issues and
questions

Job applications: AI that parses CVs for software engineers and
recommends to hire mostly men
Credit scoring: AI that gives a credit score (for bank loans and
credit applications) that recommends people from a particular
geographical region, specific gender, social class, etc
Compass tool: (2016) used by judges in the US to predict which
criminals are likely to re-offend is found to be biased by the
ethnicity (African-American/Caucasian).
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Interpretability Motivation

COMPASS data and Rule-based Predictions

Sex Age Priors
Juvenile
Felonies

Juvenile
Crimes

Ethnicity

Male 15 1 0 1 Caucasian
Male 15 1 0 1 African-American
Female 33 1 0 1 African-American
Female 27 0 1 0 Caucasian
Male 41 0 1 0 Caucasian
. . . . . . . . . . . . . . . . . .

The problem is to predict recidivism. That is, the tendency of a
convicted criminal to re-offend.
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Interpretability Motivation

Black-Box vs Interpretable Models
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Interpretability Motivation

Definitions [3]

Black-box model : A formula that is either too complicated for
any human to understand, or proprietary, so that one cannot
understand its inner workings

Interpretable model obeys a domain-specific set of constraints
to allow it (or its predictions, or the data) to be more easily
understood by humans. These constraints can differ dramatically
depending on the domain.
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Interpretability Motivation

Why Interpretable Models?

Transparent

Trustworthy

Inherently Explainable

Well adapted for troubleshooting and diagnosis

Mandatory criteria in high-stake decision making
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Interpretability Motivation

We consider in this course tabular data (but extensions to other
types is possible)

Models:Decision trees, decision lists, decision rules, and linear
functionns . . .
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Interpretability Motivation

Decision rules & Decision Sets

They are defined as If-Condition-Then-Prediction rules
Decision sets: no specific order is given between the rules. Ties
are broken by majority votes
Decision rules: rules are ordered by priority

Example of Rule List found by FairCORELS

Data : https://www.kaggle.com/danofer/compass

FairCORELS: https://github.com/ferryjul/fairCORELS
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Interpretability Interpretable Models

Interpretable Models
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Interpretability Interpretable Models

Case Study: Decision Trees

Restrictions & notations: Tabular data with binary features and
output

Let F = {f1, . . . fk} be a set of binary features (or attributes).

An example ei is represented as (x1, . . . xk, yi) where xi are the
values associated to the different features and yi ∈ {0, 1} is the
class of ei

Without loss of generality, we use the term ’positive’ for the class
1 and ’negative’ for the class 0

The data is a collection of examples {e1, . . . , en}
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Interpretability Interpretable Models

Toy Example: The Likelihood of Animal Extinction

Big Size Carnivore Seasonal Solitary Extinct
Reproduction

0 1 0 1 yes

1 0 0 1 yes

0 0 0 1 no

1 1 1 0 no

0 0 1 0 yes

0 1 1 0 yes

1 1 1 0 no

k = 4 binary features, n = 7 examples

Features F = { Big size, Carnivore, Seasonal Reproduction, Solitary }

Binary output: Extinct (the animal is extinct)

Example e6 = (0, 1, 1, 0, 1)

Data= {e1, e2, . . . e7}
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Definition of Decision Tree (in the case of binary
classification)

A decision tree is a binary tree where each leaf node corresponds
to a binary value (positive/negative class) and each internal node
j is associated to a feature feature(j) ∈ F
Let DT be a decision tree. Denote by feature(j) the feature
associated to node j in DT. We name the children of an internal
node j as right and left. We also use (j, r(j)) ((j, l(j))
respectively) to denote the arc from a node j to its right
(respectively left) child .

Classifying an example ei by a decision DT is done by following
the path P (ei) from the root to a leaf node where (j, r(j)) ∈ P (ei)
if x(feature(j)) = 1, otherwise (j, l(j)) ∈ P (ei). The leaf node of
P (ei) is the class of ei decided by DT

This definition can be extended to multiple classification and
regression (by adapting the leaf values)
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Building a decision tree: The search space

What is the search space with n examples and k features? That is,
how many potential trees are there?

Since n ≤ 2k, a decision tree in this case is a partial Boolean
function defined over k features

We are looking for a partial Boolean function g over the set of
possible partial Boolean functions S defined over k features that
meet the criteria of the decision tree. In this case S is the search
space

The size of the search space is |S|
With k features, there are 2k possible Boolean function (outputs of
the associated truth table). This is because a truth table is
determined by the binary string corresponding to the output and
because there are 2k possible strings

Out of z = 2k Boolean function we are looking for a partial
Boolean function that meet the requirements.
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Building a Decision Tree: The Search Space

Let g be a Boolean function and Compatible(g) is a Boolean
function that returns true if g is compatible with the requirements
of the decision tree

S is the set containing all the possible Compatible functions

Since there are z values in the input space of Compatible, then
there exists 2z possible instantiation of the Compatible function

Therefore, |S| = 2z = 22
k

And since a partial Boolean function can be represented by several
decision trees, then the search space for decision trees is bigger
than 22

k

This is a gigantic number!
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Dealing with Intractability

Enormous search space

Building Short trees is usually intractable

Exact algorithms hardly scale up

Most of the approaches are greedy (heuristic) approaches

Greedy algorithms follow a top-down approach: at each step,
choose the best feature (to split the data) then recursively apply
the same for the children until a certain stopping criterion
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Building a decision Tree

Decision trees can be represented as follows (f, right, left) where
f is a feature and right (respectively left) are either decision trees
or binary values (an outcome)

We use the following oracles (functions):

SelectBestFeature(data): select the best splitting feature
according to some criterion
UpdateInformation(Tree,Node): update information related to a
given stopping requirement
SelectClass(E): returns a class according to a selection criterion
Explore(E, info)) a Boolean that indicates if the algorithm should
develop more the tree

The following is a high level greedy algorithm:
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Building a decision Tree: A Greedy Algorithm

Algorithm 1 GREEDY

Require: F = {f1, . . . fk}, E = {e1, . . . en}, a parent node parent, and
an information info regarding the stopping conditions
Result: A decision tree
if Explore(E, info)) then

fj ← SelectBestFeature(data)
L← {x ∈ E|fj = 0} ; R← {x ∈ E|fj = 1};
LeftInfo← UpdateInformation(L, parent) ;
RightInfo← UpdateInformation(R, parent) ;
LeftTree← GREEDY (F \ fj , L, fj , LeftInformation) ;
RightTree← GREEDY (F \ fj , R, fj , RightInformation) ;
return (fj , LeftTree,RightTree)

else
return SelectClass(E)

end if ;
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Information Gain

There are several ways to choose a ’good’ feature

The Information Gain is one of the most used criterion

It uses the notion of Entropy that evaluates data uncertainty
(initially proposed in the context of information theory by Shanon
and Weaver)
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Entropy

Entropy is a statistical measure (proposed by Clause Shanon and
Weaver) as the number of bits needed to represent uncertainty

Imagine you toss a normal coin. Both heads and tails have a 50%
chance to occur

Guessing the outcome of the toss is highly uncertain because of
the equal chances

In this case, Entropy = 1

In the other extreme, a coin with heads on both sides has no
uncertainty because of the constant outcome (always heads)

In this case, Entropy = 0
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Entropy

Let Y be a discrete random variable taking values yj , the entropy of Y
is defined as follows:

H(Y ) =
∑
j

P (yj)× log2(1/P (yj))

where P (yj) is the probability of the value yj
Example: For a fair coin:

H(Y ) = 0.5× log2(2) + 0.5× log2(2) = 1

For a coin with 90% with heads chance:

H(V ) = 0.9× log2(10/9) + 0.1× log2(10) = 0.46
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Entropy in the case of binary decision trees

Back to binary classification with a set E of n examples containing
a positive examples and b negative examples. Consider the
classification outcome as a random variable. We denote the
entropy of this Boolean random variable as H(data)

For a feature fj , we define n1 = |E1| where E1 = E \ {x|xj = 1}
and n0 = |E0| where E0 = E \ {x|xj = 0}. We also denote by a1
(respectively a0) the number of positive examples in E1

(respectively E0) and by b1 (respectively b0) the number of
negative examples in E1 (respectively E0)
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Entropy in the case of binary decision trees

The expected entropy after splitting the data with the fj is

Remaining(fj) = n1/n×H(E1) + n0/n×H(E0)

We are looking for a feature that has a low level of uncertainty when
splitting the data. A good splitter fj is a feature with a minimum
value of Remaining(fj) (this measures how much uncertainty is
removed from the data).
This is equivalent to maximizing the information gain (IG):

IG(fj) = 1−Remaining(fj)
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Exercise: The Likelihood of Animal Extinction

Big Size Carnivore Seasonal Solitary Extinct
Reproduction

0 1 0 1 yes

1 0 0 1 yes

0 0 0 1 no

1 1 1 0 no

0 0 1 0 yes

0 1 1 0 yes

1 1 1 0 no

Build a decision tree with the previous approach where the the height is
at most 3, and the classification follows a majority rule
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Back to Greedy Algorithms

Different algorithms use different criteria

For instance, Information gain is used in C4.5 [4] and Gini Index is
used in in CART (Classification and regression trees [5])

Information gain reflects uncertainty and the purpose is to favor
the feature that minimize uncertainty

Gini Index (GI) reflects the purity of the data. The values range
from 0 to 1 where 0 represents a pure data (with one class), 1
represents a random distribution, and 0.5 represents a completely
equal distribution. The chosen split is to the one that minimzes
the GI

Both algorithms are efficient in practice, however without
guarantee of optimality

A trend is observed recently to build optimal DTs (for instance
[6, 7])
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Pruning as a post processing

Any training algorithm might build dense and long trees. This
might induce overfitting

A simple way to overcome this issue is to ‘trim’ the tree as a
post-processing step by removing useless branches or nodes (the
ones causing overfitting)

Useless branches are typically long and are used to classify a
limited number of examples

The post processing might include other operations such as
removing redundant sub-trees and useless splits
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Ensemble Learning, Random Forest, and Boosted Trees

Ensemble Learning is a learning methodology that relies on
training a number of prediction models. The idea is to improve a
constructed model by using instead a set of models

There are two types of ensemble learning: Boosting and Bagging

Bagging is a technique that learns several models by randomly
selecting a subset of the data for each model. The predictions are
made based on majority vote (in case of binary classification). In
the case of bagging with decision trees, the model is called random
forest.

Boosting is a technique that learns several models in a sequence
where each model relies on the mistakes of the previous ones to
improve the quality of the learning. Usually, when boosting a
model, each example is weighted by how many times it is badly
classified in order to give it an advantage.
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Regression

Restriction: an example is ei = (xi, yi) where xi, yi ∈ R
A linear regression task in this case is to learn a linear function
ha,b(x) = a× x+ b that approximates best the data distribution

The linear model is a line on a two dimensional plane

Let E = {(x1, y1), . . . (xn, yn)}. The optimisation problem
(considered here) is to find a function ha,b = a× x+ b that
minimizes the following loss function (Sum of Square Error):

Lossha,b
=

∑
i

(yi − ha,b(xi))
2
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Linear Regression as an Interpretable Model

The objective is to find a, b that minimize

Lossha,b
=

∑
i

(yi − (a× xi + b))2

This function is minimized when the two partial derivatives of ha,b
with respect to a and with respect to b are 0

There are two unique solutions:

a =
n× (

∑
xi × yj)−

∑
xi ×

∑
yi

n×
∑

x2i − (
∑

xi)2

b =

∑
yi − a×

∑
xi

n
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Regression with other hypothesis space

Assume that the hypothesis space is a non linear function

In the general case, the objective function depends on some
parameters p1, . . . pm. That is, the purpose is to find the
parameters that minimize Lossp1,...pm

A common way to minimize/maximize a function is to look for the
points where the gradient (assuming that the function is
differentiable) is zero.

In the general case, it is hard to figure out such solutions

Therefore, computational approaches are proposed as an
approximation method to look for the minimum values (and the
correspondent parameters). The approach is called the Gradient
descent.

The gradient descent method can be seen as a local search
approach
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Local Search

The principle of a local search algorithm is to start somewhere in
the search space with a (partial) solution

Then in a sequence of steps, replace the current (partial) solution
with a better solution in its neighborhood

The algorithm stops when a certain stopping criterion is met

Note that local search suffer from local minimums

A common way to handle this issue is to restart search from time
to time
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Gradient Descent: A Simple Algorithm

Gradient Descent is a local search approach

Start somewhere in the search space (of finding the best
parameters) by initializing p = [p1, . . . pm]

The idea is to move to a point where the gradient is closer to zero

Replace pi by pi − ∂p
∂pi

(i.e., the current solution is replaced with a

better solution in its neighborhood). This is because ∂p
∂pi

gives the
slope of the function with respect to pi

Stop until a certain criterion is met

The slope ∂p
∂pi

is usually amplified by a regulator α that is called a
step size
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Interpretability vs. Explanability
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The Debate & The 1 Million Dollars Reward

https://www.youtube.com/watch?v=4oXFEDoEcAk
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Back to Interpretable Models: Examples

Decision trees, Linear Models, but also:

Rule lists

Decision list

Binary Decision Diagram (very useful to handle redundancy with
decision trees)

. . .
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Back to Interpretable Models: Rule lists

Rule lists: an ordered list of if-then-else rules with a default
prediction.

1 If ’Carnivore’ then Extinct
2 Else If ’Solitary’ and not ’Big Size’ then Not Extinct
3 Else Extinct
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Back to Interpretable Models: Decision Lists

Decision Lists: a set of if-then-else rules without any specific order.
The prediction is made following a majority rule or a random
choice if needed (e.g., if an example satisfies two different rules).

For example: {If ’Carnivore’ then Extinct; If ’Solitary’ and
not ’Big Size’ then Not Extinct ; If ’Seasonal
Reproduction’ then Extinct }
Consider an example that is ’Carnivore’, follows a ’Seasonal
Reproduction’, ’Solitary’, and does not have a ’Big Size’. Two
rules classify the example positively (Extinct) and one rule
classifies it negatively (Not Extinct). In this case the majority
vote is used and the prediction is positive (Extinct).
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Back to Interpretable Models: Why Interpretable
Models?

Transparent

Coherent with trustworthy AI (See for instance ‘GDPR’ (the
European General Data Protection Regulation)

Inherently Explainable

Well adapted for troubleshooting and diagnosis

Mandatory criteria in high-stake decision making
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Explainability

Very complex (and philosophical) notion (see for instance the
interview with Richard Feynman on the ’Why’ question
https://www.youtube.com/watch?v=36GT2zI8lVA)

To explain predictions one needs a clear context to define
explanations (user defined)

In machine learning, we usually use a subset of the example that
are ’responsible’ for the prediction. That is, changing their values
would change the prediction

Explainability can be applied to black box models as a post
processing step
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Explainability

Explaining black box models is usually done by probing the model
few times

Sometime it is not even possible to explain black box models

No theoretical guarantees

It gets worse! Since different explanations can be used, one might
pick a particular explanation to hide model biases (this is observed
with many commercial tools!)

Imagine a credit score black box model where a client might have
several explanations regarding the refusal. The company might
pick an explanation that doesn’t show certain bias (such as
predictions based on the gender)
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Back to Interpretability

Interpretability guarantees the transparency of the explanations

No post-processing (in the sense of probing the model) is necessary
for explanations. It is enough to look at the model

However sometimes the explanations are not optimal (in the size
of set inclusion). In this case, a user might ask for minimal
explanations. This task can be done as a post-processing step

Unfortunately, interpretable models (so far) are not adapted to all
applications (for instance in tumor detection and computer
vision). Such applications depend heavily on recent advances of
black box models
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Think about it..
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