
An Introduction to Boolean Satisfiability

Mohamed Siala
siala.github.io

INSA-Toulouse & LAAS-CNRS

January 27, 2024

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 1 / 92



Context : Decision Making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 2 / 92



Introduction & Context

Context

https://homepages.laas.fr/ehebrard/rosetta.html

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 3 / 92

https://homepages.laas.fr/ehebrard/rosetta.html


Introduction & Context

Context

https://homepages.laas.fr/ehebrard/rosetta.html
Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 3 / 92

https://homepages.laas.fr/ehebrard/rosetta.html


Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 4 / 92



Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 4 / 92



Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 5 / 92



Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 5 / 92



Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 6 / 92



Introduction & Context

Context

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 6 / 92



Introduction & Context

Decision Making: Three Families

Predictive decision making : mainly machine learning

Prescriptive decision making: a problem is defined via a set of
constraints and eventually a utility function to optimise

Diagnostic decision making: usually as post-processing.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 7 / 92



Introduction & Context

Decision Making: Three Families

Predictive decision making : mainly machine learning

Prescriptive decision making: a problem is defined via a set of
constraints and eventually a utility function to optimise

Diagnostic decision making: usually as post-processing.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 7 / 92



Introduction & Context

Decision Making: Three Families

Predictive decision making : mainly machine learning

Prescriptive decision making: a problem is defined via a set of
constraints and eventually a utility function to optimise

Diagnostic decision making: usually as post-processing.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 7 / 92



Introduction & Context

Decision Making: Three Families

Predictive decision making : mainly machine learning

Prescriptive decision making: a problem is defined via a set of
constraints and eventually a utility function to optimise

Diagnostic decision making: usually as post-processing.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 7 / 92



Introduction & Context

Decision Making: Three Families

Predictive decision making : mainly machine learning

Prescriptive decision making: a problem is defined via a set of
constraints and eventually a utility function to optimise

Diagnostic decision making: usually as post-processing.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 7 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands. → Predictive decision making

A scheduling problem is then defined according to the above
predictions → Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s → Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands.

→ Predictive decision making

A scheduling problem is then defined according to the above
predictions → Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s → Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands. → Predictive decision making

A scheduling problem is then defined according to the above
predictions → Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s → Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands. → Predictive decision making

A scheduling problem is then defined according to the above
predictions

→ Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s → Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands. → Predictive decision making

A scheduling problem is then defined according to the above
predictions → Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s

→ Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Real-life Decision Making

Take the example of implementing a new transportation system

Historical data is collected to predict important locations and
their corresponding demands. → Predictive decision making

A scheduling problem is then defined according to the above
predictions → Prescriptive decision making

The correspondent solution is deployed and a feedback loop is
maintained to diagnosis the solution’s → Diagnostic decision
making

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 8 / 92



Introduction & Context

Why this Lecture?

We are missing job opportunities in decision making, and in
particular in prescriptive decision making!

We consider prescriptive decision making through the lens of
combinatorial optimisation

SAT as an efficient tool for prescriptive decision making

We focus in this course on the modelling aspect

Resources for combinatorial optimisation: Many! a good start
would be the online course on discrete optimisation
https://www.coursera.org/learn/discrete-optimization

Handbook of Satisfiability - Second Edition - IOS Press, 2021

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 9 / 92

 https://www.coursera.org/learn/discrete-optimization


Introduction & Context

Why this Lecture?

We are missing job opportunities in decision making, and in
particular in prescriptive decision making!

We consider prescriptive decision making through the lens of
combinatorial optimisation

SAT as an efficient tool for prescriptive decision making

We focus in this course on the modelling aspect

Resources for combinatorial optimisation: Many! a good start
would be the online course on discrete optimisation
https://www.coursera.org/learn/discrete-optimization

Handbook of Satisfiability - Second Edition - IOS Press, 2021

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 9 / 92

 https://www.coursera.org/learn/discrete-optimization


Introduction & Context

Why this Lecture?

We are missing job opportunities in decision making, and in
particular in prescriptive decision making!

We consider prescriptive decision making through the lens of
combinatorial optimisation

SAT as an efficient tool for prescriptive decision making

We focus in this course on the modelling aspect

Resources for combinatorial optimisation: Many! a good start
would be the online course on discrete optimisation
https://www.coursera.org/learn/discrete-optimization

Handbook of Satisfiability - Second Edition - IOS Press, 2021

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 9 / 92

 https://www.coursera.org/learn/discrete-optimization


Introduction & Context

Why this Lecture?

We are missing job opportunities in decision making, and in
particular in prescriptive decision making!

We consider prescriptive decision making through the lens of
combinatorial optimisation

SAT as an efficient tool for prescriptive decision making

We focus in this course on the modelling aspect

Resources for combinatorial optimisation: Many! a good start
would be the online course on discrete optimisation
https://www.coursera.org/learn/discrete-optimization

Handbook of Satisfiability - Second Edition - IOS Press, 2021

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 9 / 92

 https://www.coursera.org/learn/discrete-optimization


Introduction & Context

Combinatorial Optimisation: Travelling Salesman
Problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 10 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Exemple

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

−− > Cost : 5 + 7 + 8 + 5 + 9 + 11 + 6 = 53Km

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 11 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

Example

a

b c

d e

f g

7

8
5

9

2

5
15

6

8

9

11

2d

a

f

b

e

c

g

−− > Cost : 5 + 7 + 2 + 5 + 2 + 11 + 6 = 38Km

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 12 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities

→2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

What if we check all possibilities?

2 Cities →1

5 Cities →24

8 Cities →4032

40 Cities →2.1046 (with a modern machine: 3.1027 years!)

95 Cities, if we use a Planck (the shortest possible time interval
that can be measured) processor and fill the universe with one
processor per mm3, we need 3× the age of the universe

The problem is inherently hard. However, the Concorde algorithm can
solve instances up to 86 000 cities!

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 13 / 92



Introduction & Context

A step back: Problems, Instances, and Algorithms

A problem is a question that associates an input to an output

Many instances (instantiation of the input) for the same problem

Many algorithms (methodologies) to solve the same problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 14 / 92



Introduction & Context

A step back: Problems, Instances, and Algorithms

A problem is a question that associates an input to an output

Many instances (instantiation of the input) for the same problem

Many algorithms (methodologies) to solve the same problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 14 / 92



Introduction & Context

A step back: Problems, Instances, and Algorithms

A problem is a question that associates an input to an output

Many instances (instantiation of the input) for the same problem

Many algorithms (methodologies) to solve the same problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 14 / 92



Introduction & Context

A step back: Problems, Instances, and Algorithms

A problem is a question that associates an input to an output

Many instances (instantiation of the input) for the same problem

Many algorithms (methodologies) to solve the same problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 14 / 92



Introduction & Context

A step back: Problems, Instances, and Algorithms

A problem is a question that associates an input to an output

Many instances (instantiation of the input) for the same problem

Many algorithms (methodologies) to solve the same problem

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 14 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods

1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods

1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm

2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method

3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches

1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,

2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming

3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Solving Methodologies

1 Adhoc methods
1 Specific exact algorithm
2 Heuristic method
3 Meta-heuristic (genetic algorithms, ant colony, ..)

2 Declarative Approaches
1 (Mixed) Integer Programming,
2 Constraint Programming
3 Boolean Satisfiability (SAT)
4 . . .

Why Declarative Approaches?

They are problem independent! The user models the problem in a
specific language and the solver does the job!

Very active community

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 15 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Complexity: How to Evaluate Algorithms

Complexity: a measure to analyze/classify algorithms based on
the amount of resources required (Time and Memory)

Time Complexity: number of operations as a function of the size
of the input

Space Complexity: memory occupied by the algorithm as a
function of the size of the input

The evaluation is made usually by reasoning about the worst case.

The analysis is given with regard to the asymptotic behaviour

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 16 / 92



Introduction & Context

Asymptotic behaviour

0 1,000 2,000 3,000 4,000 5,000

0

1

2

·107

Input size

R
u
n
ti
m
e

Asymptotic behavior

n
2000× n

n2

1,070 1,075 1,080 1,085 1,090 1,095 1,100

0

0.5

1

·10331

Input size

R
u
n
ti
m
e

Asymptotic behavior

n100

2n

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 17 / 92



Introduction & Context

Asymptotic behaviour

0 1,000 2,000 3,000 4,000 5,000

0

1

2

·107

Input size

R
u
n
ti
m
e

Asymptotic behavior

n
2000× n

n2

1,070 1,075 1,080 1,085 1,090 1,095 1,100

0

0.5

1

·10331

Input size

R
u
n
ti
m
e

Asymptotic behavior

n100

2n

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 17 / 92



Introduction & Context

Asymptotic behaviour

0 1,000 2,000 3,000 4,000 5,000

0

1

2

·107

Input size

R
u
n
ti
m
e

Asymptotic behavior

n
2000× n

n2

1,070 1,075 1,080 1,085 1,090 1,095 1,100

0

0.5

1

·10331

Input size

R
u
n
ti
m
e

Asymptotic behavior

n100

2n

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 17 / 92



Introduction & Context

If f is polynomial and g is exponential then f ∈ O(g).
For instance n10000 ∈ O(2n)

Convention:

Easy/Tractable Problem: We know a polynomial time algorithm to
solve the problem
Hard/Intractable: No known polynomial algorithm

Example: The sorting problem is easy because we have an
algorithm that runs in the worst case in O(n log(n))

What if we don’t know if a problem has a polynomial time
algorithm?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 18 / 92



Introduction & Context

If f is polynomial and g is exponential then f ∈ O(g).
For instance n10000 ∈ O(2n)

Convention:

Easy/Tractable Problem: We know a polynomial time algorithm to
solve the problem
Hard/Intractable: No known polynomial algorithm

Example: The sorting problem is easy because we have an
algorithm that runs in the worst case in O(n log(n))

What if we don’t know if a problem has a polynomial time
algorithm?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 18 / 92



Introduction & Context

If f is polynomial and g is exponential then f ∈ O(g).
For instance n10000 ∈ O(2n)

Convention:

Easy/Tractable Problem: We know a polynomial time algorithm to
solve the problem
Hard/Intractable: No known polynomial algorithm

Example: The sorting problem is easy because we have an
algorithm that runs in the worst case in O(n log(n))

What if we don’t know if a problem has a polynomial time
algorithm?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 18 / 92



Introduction & Context

If f is polynomial and g is exponential then f ∈ O(g).
For instance n10000 ∈ O(2n)

Convention:

Easy/Tractable Problem: We know a polynomial time algorithm to
solve the problem
Hard/Intractable: No known polynomial algorithm

Example: The sorting problem is easy because we have an
algorithm that runs in the worst case in O(n log(n))

What if we don’t know if a problem has a polynomial time
algorithm?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 18 / 92



Introduction & Context

If f is polynomial and g is exponential then f ∈ O(g).
For instance n10000 ∈ O(2n)

Convention:

Easy/Tractable Problem: We know a polynomial time algorithm to
solve the problem
Hard/Intractable: No known polynomial algorithm

Example: The sorting problem is easy because we have an
algorithm that runs in the worst case in O(n log(n))

What if we don’t know if a problem has a polynomial time
algorithm?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 18 / 92



Introduction & Context

Classes of problems

P is the class of problems that are solvable in polynomial time
(easy problems)

NP is the class of problems that are verifiable in polynomial
time algorithm: Give me a candidate solution S and one can tell
in polynomial time if S is a solution

We know that P ∈ NP (if you can solve in nd then you can verify
in nd)

For many Problems in NP , we don’t know if a polynomial time
algorithm exists. Is P=NP?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 19 / 92



Introduction & Context

Classes of problems

P is the class of problems that are solvable in polynomial time
(easy problems)

NP is the class of problems that are verifiable in polynomial
time algorithm: Give me a candidate solution S and one can tell
in polynomial time if S is a solution

We know that P ∈ NP (if you can solve in nd then you can verify
in nd)

For many Problems in NP , we don’t know if a polynomial time
algorithm exists. Is P=NP?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 19 / 92



Introduction & Context

Classes of problems

P is the class of problems that are solvable in polynomial time
(easy problems)

NP is the class of problems that are verifiable in polynomial
time algorithm: Give me a candidate solution S and one can tell
in polynomial time if S is a solution

We know that P ∈ NP (if you can solve in nd then you can verify
in nd)

For many Problems in NP , we don’t know if a polynomial time
algorithm exists. Is P=NP?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 19 / 92



Introduction & Context

Classes of problems

P is the class of problems that are solvable in polynomial time
(easy problems)

NP is the class of problems that are verifiable in polynomial
time algorithm: Give me a candidate solution S and one can tell
in polynomial time if S is a solution

We know that P ∈ NP (if you can solve in nd then you can verify
in nd)

For many Problems in NP , we don’t know if a polynomial time
algorithm exists. Is P=NP?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 19 / 92



Introduction & Context

Classes of problems

P is the class of problems that are solvable in polynomial time
(easy problems)

NP is the class of problems that are verifiable in polynomial
time algorithm: Give me a candidate solution S and one can tell
in polynomial time if S is a solution

We know that P ∈ NP (if you can solve in nd then you can verify
in nd)

For many Problems in NP , we don’t know if a polynomial time
algorithm exists. Is P=NP?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 19 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1

Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)

Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

The Boolean Satisfiability Problem (SAT)

Definitions

Atoms (Boolean variables): x1, x2, . . .

Literal: x1,¬x1
Clauses: a clause is a disjunction of literals

Example of clause: (¬x1 ∨ ¬x4 ∨ x7)
Propositional formula Φ given in a Conjunctive Normal Form

(CNF) Φ : c1 ∧ .. ∧ cn

Given a set of Boolean variables x1, . . . xn and a CNF formula Φ over
x1, . . . xn, the Boolean Satisfiability problem (SAT) is to find an
assignment of the variables that satisfies all the clauses.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 20 / 92



Introduction & Context

Example

x ∨ ¬y ∨ z
¬x ∨ ¬z
y ∨ w
¬w ∨ ¬x

A possible solution:

x← 1; y ← 1; z ← 0;w ← 0

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 21 / 92



Introduction & Context

Example

x ∨ ¬y ∨ z
¬x ∨ ¬z
y ∨ w
¬w ∨ ¬x

A possible solution:

x← 1; y ← 1; z ← 0;w ← 0

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 21 / 92



Introduction & Context

Example

x ∨ ¬y ∨ z
¬x ∨ ¬z
y ∨ w
¬w ∨ ¬x

A possible solution:

x← 1; y ← 1; z ← 0;w ← 0

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 21 / 92



Introduction & Context

Why SAT?

SAT is the first problem that is shown to be in the class
NP-Complete (the class of the ’hardest’ problems in NP):

Any problem in NP can be reduced polynomially to SAT
If you can solve SAT in polynomial time, call me straight away!
If you find a polynomial time algorithm to solve SAT you solve the
P = NP? question

It is considered today as a powerful technology to solve
computational problems

Huge practical improvements in the past 2 decades or so

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 22 / 92



Introduction & Context

Why SAT?

SAT is the first problem that is shown to be in the class
NP-Complete (the class of the ’hardest’ problems in NP):

Any problem in NP can be reduced polynomially to SAT
If you can solve SAT in polynomial time, call me straight away!
If you find a polynomial time algorithm to solve SAT you solve the
P = NP? question

It is considered today as a powerful technology to solve
computational problems

Huge practical improvements in the past 2 decades or so

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 22 / 92



Introduction & Context

Why SAT?

SAT is the first problem that is shown to be in the class
NP-Complete (the class of the ’hardest’ problems in NP):

Any problem in NP can be reduced polynomially to SAT
If you can solve SAT in polynomial time, call me straight away!
If you find a polynomial time algorithm to solve SAT you solve the
P = NP? question

It is considered today as a powerful technology to solve
computational problems

Huge practical improvements in the past 2 decades or so

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 22 / 92



Introduction & Context

Why SAT?

SAT is the first problem that is shown to be in the class
NP-Complete (the class of the ’hardest’ problems in NP):

Any problem in NP can be reduced polynomially to SAT
If you can solve SAT in polynomial time, call me straight away!
If you find a polynomial time algorithm to solve SAT you solve the
P = NP? question

It is considered today as a powerful technology to solve
computational problems

Huge practical improvements in the past 2 decades or so

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 22 / 92



Introduction & Context

Examples of Applications

AI Planning

Scheduling

Software verification

Machine learning

Robustness
Synthesis
Verification

Mathematical Proofs!
https://news.cnrs.fr/articles/

the-longest-proof-in-the-history-of-mathematics

Timetabling

. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 23 / 92

 https://news.cnrs.fr/articles/the-longest-proof-in-the-history-of-mathematics
 https://news.cnrs.fr/articles/the-longest-proof-in-the-history-of-mathematics


Introduction & Context

Modelling in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 24 / 92



Modelling

The example of Graph Colouring

Graph Coloring is a well known combinatorial problem that has
many applications (in particular in scheduling problems)

Let G = (V,E) be an undirected graph where V is a set of n
vertices and E is a set of m edges. Is it possible to colour the
graph with k colours such that no two adjacent nodes share the
same colour?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 25 / 92



Modelling

Modelling in SAT: The Example of Graph Coloring

Propose a SAT model for this problem

There is no need to explicitly encode x→ y since it is equivalent
¬x ∨ y

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 26 / 92



Modelling

Modelling in SAT: The Example of Graph Coloring

Propose a SAT model for this problem

There is no need to explicitly encode x→ y since it is equivalent
¬x ∨ y

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 26 / 92



Modelling

Modelling in SAT: The Example of Graph Coloring

Propose a SAT model for this problem

There is no need to explicitly encode x→ y since it is equivalent
¬x ∨ y

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 26 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n],∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi
(This is a translation of xai → ¬xbi)
Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n],∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi
(This is a translation of xai → ¬xbi)
Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n],∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi
(This is a translation of xai → ¬xbi)
Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n], ∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi

(This is a translation of xai → ¬xbi)
Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n], ∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi
(This is a translation of xai → ¬xbi)

Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: A Possible Model

Let xki be the Boolean variable that is True iff node i is coloured with
the colour k.

Each node has to be colored with at least one color:

∀i ∈ [1, n], x1i ∨ x2i . . . xki

If a node is coloured with a colour a, the other colours are
forbidden:

∀i ∈ [1, n], ∀a ̸= b ∈ [1, k], : ¬xai ∨ ¬xbi
(This is a translation of xai → ¬xbi)
Forbid two nodes that share an edge to be coloured with the same
colour

∀{i, j} ∈ E,∀a ∈ [1, k] : ¬xai ∨ ¬xaj
(This is a translation of xai → ¬xaj )

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 27 / 92



Modelling

The Example of Graph Coloring: The Model Size

What is the (space) size of the model?

n× k Boolean variables

Constraints form 1: n clauses with k literals each

Constraints form 2: n× k2 binary clauses

Constraints form 3: m× k binary clauses

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 28 / 92



Modelling

The Example of Graph Coloring: The Minimization
Version

Propose a method that uses SAT for the minimisation version of
the problem. That is, given G = (V,E), we seek to find the
minimum value of k to satisfy the colouring requirements.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 29 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value
Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value
Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value
Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value
Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value

Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

A Straightforward Approach

Find a valid upper bound UB and a lower bound LB for k

Run iteratively the decision version until converging to the
optimal value

Let’s call SAT (V,E,K) the SAT model of the decision version of
the problem (i.e., can we find a valid colouring of G(V,E) with k
colours). Use SAT (V,E,K) as an oracle within an iterative
search. For instance:

Decreasing linear Search: Run iteratively
SAT (V,E,UB − 1), SAT (V,E,UB − 2), . . . until the problem is
unsatisfiable. The last satisfiable value of k is the optimal value
Binary search: Run iteratively SAT (V,E, z) as long as UB > LB
where z = ⌈(UB − LB)/2⌉. If the result is satisfiable, then and
UB ← z otherwise LB ← z

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 30 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex

At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.

The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.

The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Upper/Lower Bound?

Upper bound: For instance, we can run the following iterative
greedy algorithm:

Each vertex v is considered non-coloured and has a portfolio Sv of
available colours. The set is initially {1, 2, . . . n} for each vertex
At each iteration, look for a non-coloured vertex v that has the
greatest number of non coloured neighbours. Colour it with the
smallest colour in Sv and remove its colour from all its neighbours.
The resulting colouring is valid and the upper bound is the number
of different colours used.
The run time complexity is O(n2 ×m)

Lower bound: one can simply consider 2 as long as there is an
edge. A more advanced one is to look for a clique in the graph.

An alternative approach is to look for valid theoretical bounds in
the literature.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 31 / 92



Modelling

Exercices: Circular dinner

n people are invited to dinner.

M is a (Boolean) compatibility matrix. That is, M [i][j] = 1 iff., i
enjoys dinnig with j

The purpose is to organize a circular dinner such that each person
enjoys having dinner with the four closest persons on the table
(i.e., neighborhood of distance 2)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 32 / 92



Modelling

Modelling Cardinality Constraints

A cardinality constraint takes as input a sequence of Boolean
variables [x1, . . . , xn] and an integer k and enforces

n∑
1

xi ≤ k

Cardinality constraints are everywhere!

There exist many ways in the literature to encode such
constraints. See for instance
https://www.carstensinz.de/papers/CP-2005.pdf

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 33 / 92

https://www.carstensinz.de/papers/CP-2005.pdf


Modelling

Quadratic encoding for
∑n

1 xi = 1

At least one constraint:

x1 ∨ x2 . . . ∨ xn

at most one constraint:

∀i, j : ¬xi ∨ ¬xj

This generates one clause of size n and (n2) binary clauses without
introducing additional variables.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 34 / 92



Modelling

Linear encoding for
∑n

1 xi = 1

A sequence of Boolean variables [y1, . . . , yn] is introduced such that
∀i ∈ [1, n], yi is true iff

∑l=i
l=1 xl = 1. The set of clauses for the encoding

is the following:

x1 ∨ x2 . . . ∨ xn
y1n

∀i ∈ [1, n− 1] : yi → yi+1

∀i ∈ [1, n− 1] : yi → ¬xi+1

∀i ∈ [1, n] : xi → yi

Size: n new variables, 1 n−ary clause and 3× n binary clauses,

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 35 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z

y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

New variables: ∀z ∈ [0, k],∀i ∈ [1, n], yzi ⇐⇒
∑l=i

l=1 xl ≥ z
y01 ← 1

y11 ← x1

y21 ← 0

ykn ← 1

Vertical relationship: ∀i ∈ [1, n],∀z ∈ [1, k − 1] : yz+1
i → yzi

Horizontal relationship: ∀i ∈ [1, n− 1],∀z ∈ [0, k] : yzi → yzi+1

Bound the shape: ¬yzi−1 → ¬y
z+1
i

Increment the count: yzi−1 ∧ xi → yz+1
i

Do not Increment: ¬yzi−1 ∧ ¬xi → ¬yzi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 36 / 92



Modelling

Encoding for
∑n

1 xi ≥ k

Size of the encoding:

Θ(n× k) variables
Θ(n+ k) unary clauses

Θ(n× k) binary clauses

Θ(n× k) ternary clauses

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 37 / 92



Modelling

Encoding for
∑n

1 xi = k ?

Encode
∑n

1 xi ≥ k + 1

Add ykn

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 38 / 92



Modelling

Encoding for
∑n

1 xi = k ?

Encode
∑n

1 xi ≥ k + 1

Add ykn

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 38 / 92



Modelling

Encoding for
∑n

1 xi = k ?

Encode
∑n

1 xi ≥ k + 1

Add ykn

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 38 / 92



Modelling

Encoding for
∑n

1 xi = k ?

Encode
∑n

1 xi ≥ k + 1

Add ykn

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 38 / 92



Modelling

Linear encoding for
∑n

1 xi ≤ k ?

Encode
∑n

1 xi ≥ k + 1

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 39 / 92



Modelling

Linear encoding for
∑n

1 xi ≤ k ?

Encode
∑n

1 xi ≥ k + 1

Replace yk+1
n by ¬yk+1

n

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 39 / 92



Modelling

Linear encoding for a ≤
∑n

1 xi ≤ b ?

Encode
∑n

1 xi ≤ b∑n
1 xi ≥ a with the same additional variables

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 40 / 92



Modelling

Linear encoding for a ≤
∑n

1 xi ≤ b ?

Encode
∑n

1 xi ≤ b

∑n
1 xi ≥ a with the same additional variables

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 40 / 92



Modelling

Linear encoding for a ≤
∑n

1 xi ≤ b ?

Encode
∑n

1 xi ≤ b∑n
1 xi ≥ a with the same additional variables

The size of the encoding is the same as
∑n

1 xi ≥ k (asymptotically)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 40 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:

Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses

Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses

Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

Extensions: MaxSAT

MaxSAT is an optimisation extension of SAT where some clauses
are ”hard” (must be satisfied) and others are ”soft” (can be
violated).

The task is to find an assignment of the variables that satisfies the
hard clauses and maximises the number of ”soft” clauses

MaxSAT:
Variables: Booleans, Clauses: hard and soft clauses
Maximisation problem: Is there an assignment of the variables that
satisfy all the hard clauses, and maximises the number of satisfied
soft clauses?

Weighted MaxSAT: Extension of MaxSAT where every soft clause
is associated with a weight

Objective: satisfy hard clauses and maximise the weighted sum of
satisfied soft clauses.

Check the MaxSAT competition

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 41 / 92



Modelling

The Example of Graph Coloring: A Possible MaxSAT
Model

Let G = (V,E) be an undirected graph where V is the set of vertices
and E is the set of edges. In the (decision version of the) graph
colouring problem, we are given k colours to colour the graph such that
no two adjacent nodes share the same colour.

Propose a MaxSAT model for the minimisation version of the
problem. That is, given G = (V,E), we seek to find the minimum
value of k to satisfy the colouring requirements.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 42 / 92



Modelling

The Example of Graph Coloring: A Possible MaxSAT
Model

Let G = (V,E) be an undirected graph where V is the set of vertices
and E is the set of edges. In the (decision version of the) graph
colouring problem, we are given k colours to colour the graph such that
no two adjacent nodes share the same colour.

Propose a MaxSAT model for the minimisation version of the
problem. That is, given G = (V,E), we seek to find the minimum
value of k to satisfy the colouring requirements.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 42 / 92



Modelling

The Example of Graph Coloring: A Possible MaxSAT
Model

We shall extend the previous model:
Let ua be a Boolean variable that is True iff. the colour a ∈ [1, k]
is used
Consider the previous model SAT (V,E, k) with k an upper bound.
All the previous clauses are hard.
Add the following hard clauses:

∀i ∈ [1, n],∀a ∈ [1, k] : ¬ua → ¬xai
Eventually we can add implied constraints: ua → ua−1

Then add the soft clauses:

∀a ∈ [1, k] : ¬ua
A MaxSAT Optimal solution satisfies all the hard coloring clauses
(valid colouring) and maximizes the number of non used colours.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 43 / 92



Modelling

Extensions: Quantified Boolean Formula (QBF)

A QBF has the form Q.F , where F is a CNF-SAT formulae, and
Q is a sequence of quantified variables (∀x or ∃x).
Example ∀x,∃y,∃z, (x ∨ ¬y) ∧ (¬y ∨ z)
QBF Solver Competition:
https://www.qbflib.org/solvers_list.php

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 44 / 92

https://www.qbflib.org/solvers_list.php


Modelling

Extensions: Satisfiability Modulo Theories (SMT)

SMT extends SAT by allowing higher level constraints

Such constraints belong to certain theories

Examples of theories include linear integer arithmetic, linear real
arithmetic, difference logic, etc

Check the SAT/SMT summer schools
http://satassociation.org/sat-smt-school.html

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 45 / 92

http://satassociation.org/sat-smt-school.html


Modelling

Exercise: SAT for Machine Learning

Let F = [f1, . . . fk] be a set of k features and E = [e1, . . . en] a set
of n examples.

We want to build adecision tree

Task1: Propose a model for the topology of the tree

Task 2: Extend the model to make sure that each example is well
classified

Task 3: Adapt the model to maximize the accuracy of the model

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 46 / 92



Modelling

Exercise: Clique

A clique in a graph G(V,E) (where V is the set of vertices and E is the
set of edges). A clique in G is a set of vertices C ⊆ V such that
∀a, b ∈ C, {a, b} ∈ E. For examples, in the example below:
{x1, x2, x3, x4, x5} is a clique and {x3, x6, x7} is not a clique.

x1

x2

x3

x4

x5

x6

x7

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 47 / 92



Modelling

Propose a SAT model to find a clique of size ≥ k for a graph
G(V,E).

A possible solution:

xi true iff vi is in the clique
For each {i, j} ̸∈ E :

¬xi ∨ ¬xj
Clique size: ∑

xi ≥ k

Implied constraints: If a vertex vi has less than k edges it shouldn’t
be part of the clique:

¬xi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 48 / 92



Modelling

Propose a SAT model to find a clique of size ≥ k for a graph
G(V,E).

A possible solution:

xi true iff vi is in the clique
For each {i, j} ̸∈ E :

¬xi ∨ ¬xj
Clique size: ∑

xi ≥ k

Implied constraints: If a vertex vi has less than k edges it shouldn’t
be part of the clique:

¬xi

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 48 / 92



Modelling

MaxSAT

Adapt your model into a MaxSAT formulae to find a clique with a
maximum size

Same model without carnality constraints, without implies
constraints, and each xi is added as a soft clause

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 49 / 92



Modelling

MaxSAT

Adapt your model into a MaxSAT formulae to find a clique with a
maximum size

Same model without carnality constraints, without implies
constraints, and each xi is added as a soft clause

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 49 / 92



Modelling

MaxSAT

Adapt your model into a MaxSAT formulae to find a clique with a
maximum size

Same model without carnality constraints, without implies
constraints, and each xi is added as a soft clause

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 49 / 92



Modelling

Exercise: Shortest Path

Let G(V,E) be a directed graph (where V is the set of vertices and E
is the set of directed edges). Suppose that G has a one source s ∈ V
and one sink o ∈ V .
Propose a SAT model to find a path from s to o.
Adapt your model to find a shortest path

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 50 / 92



Modelling

Conflict Driven Clause Learning

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 51 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)

Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Modern SAT Solvers: Conflict Driven Clause Learning (CDCL)

[Silva and Sakallah, 1999, Moskewicz et al., 2001]

DPLL [Davis et al., 1962] ⊕ Resolution [Robinson, 1965]

DPLL: Backtracking + Unit Propagation

Resolution: Learning based on the rule
(l ∨ c1) ∧ (¬l ∨ c2)⇒ (c1 ∨ c2)
Can be seen as a CP Solver (Search, propagation)
augmented by clause learning

But also :

Activity-based branching
Lazy data structures (2-Watched Literals)
Clause Database Reduction
Simplifications
Restarts
. . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 52 / 92



Conflict Driven Clause Learning

Exercise: Propose a filtering algorithm to prune the variables domain
in a given clause

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 53 / 92



Conflict Driven Clause Learning

Unit Propagation

Given a clause C of arity n. If n− 1 literals are false then set the last
one to be true.

Example: (a ∨ ¬b ∨ ¬c ∨ d)

¬a b ¬d

¬c
¬a ∧ b ∧ ¬d⇒ ¬c

¬a b c ¬d

⊥
¬a ∧ b ∧ c ∧ ¬d⇒ ⊥

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 54 / 92



Conflict Driven Clause Learning

Algorithm 1: Unit Propagation

Data: A clause C
if All literals in C are false then

return Failure ;
else

if Only one literal l ∈ C is unassigned and the rest are false
then

Make l true ;
end

end

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 55 / 92



Conflict Driven Clause Learning

Unit Propagation

Observe first that propagation happens only in two cases:

The clause becomes unit (i.e., all variables except one is
instantiated): Propagate the only uninstantiated literal to satisfy
the clause
All literals are instantiated and none of them satisfy the clause

Therefore for each clause C, as long as there are two literals non
instantiated in C, nothing happens!

The idea of the Two-watched literals is to keep 2 literals for every
clause that are not instantiated. Those literals will “watch the
clause” and guarantee that no propagation is needed.

If a literal watching a clause C becomes false, look for
replacement. If no replacement found, then perform propagation

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 55 / 92



Conflict Driven Clause Learning

Unit Propagation

Observe first that propagation happens only in two cases:

The clause becomes unit (i.e., all variables except one is
instantiated): Propagate the only uninstantiated literal to satisfy
the clause
All literals are instantiated and none of them satisfy the clause

Therefore for each clause C, as long as there are two literals non
instantiated in C, nothing happens!

The idea of the Two-watched literals is to keep 2 literals for every
clause that are not instantiated. Those literals will “watch the
clause” and guarantee that no propagation is needed.

If a literal watching a clause C becomes false, look for
replacement. If no replacement found, then perform propagation

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 55 / 92



Conflict Driven Clause Learning

Unit Propagation

Observe first that propagation happens only in two cases:

The clause becomes unit (i.e., all variables except one is
instantiated): Propagate the only uninstantiated literal to satisfy
the clause
All literals are instantiated and none of them satisfy the clause

Therefore for each clause C, as long as there are two literals non
instantiated in C, nothing happens!

The idea of the Two-watched literals is to keep 2 literals for every
clause that are not instantiated. Those literals will “watch the
clause” and guarantee that no propagation is needed.

If a literal watching a clause C becomes false, look for
replacement. If no replacement found, then perform propagation

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 55 / 92



Conflict Driven Clause Learning

Unit Propagation

Observe first that propagation happens only in two cases:

The clause becomes unit (i.e., all variables except one is
instantiated): Propagate the only uninstantiated literal to satisfy
the clause
All literals are instantiated and none of them satisfy the clause

Therefore for each clause C, as long as there are two literals non
instantiated in C, nothing happens!

The idea of the Two-watched literals is to keep 2 literals for every
clause that are not instantiated. Those literals will “watch the
clause” and guarantee that no propagation is needed.

If a literal watching a clause C becomes false, look for
replacement. If no replacement found, then perform propagation

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 55 / 92



Conflict Driven Clause Learning

Exercices

What is the domain of each Boolean variable after propagating the
following clauses assuming that a is true and the rest of the
variables are unassigned:

¬a ∨ g¬c
b ∨ ¬c ∨ g
a ∨ ¬d ∨ c
¬g ∨ a ∨ h
¬b ∨ g ∨ d
b ∨ ¬a ∨ ¬h

Is the problem satisfiable if ¬b is added? If yes, give a
correspondent solution.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 56 / 92



Conflict Driven Clause Learning

Algorithm 2: Two watched Literals (decision d)
▷ Assuming initially that all variables are unassigned and that each clause contains at least 2 literals

▷ For each clause C, W [C] is initialized with a set that contains two variables in C
▷ For each variable x, B[x] is the set of clauses watched by x
▷ d is the latest decision ;

S ← {d} ;
while S ̸= ∅ do

Let x ∈ S ;
S ← S \ {x} ;
while B[x] ̸= ∅ do

Let C ∈ B[x] ;
if x does not not satisfy C then

W [C]← W [C] \ {x} ;

if ∃x′ ∈ C \W [C] such that x′ is unassigned then
W [C]← W [C] ∪ {x′} ;

B[x′]← B[x′] ∪ {C} ;

else
Let y ∈ W [C] ;
if y is not assigned then

assign y to a value that satisfies C ;
S ← S ∪ {y} ;
S ← ∅

else
if y does not satisfy C then

return FAILURE ;
end

end

end

end

end

end

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,

backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C),

propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause,

and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Learning and Backjumping

Definition: Explaining a failure: l1 ∧ . . . ∧ ln→ ⊥ where
¬l1 ∨ . . . ∨ ¬ln is the clause triggering the failure

Definition: Explaining a propagation of l: l1 ∧ . . . ∧ ln→l where
¬l1 ∨ . . . ∨ ¬ln ∨ l is the triggering clause

At each conflict learn a new clause as following:

Start with the explanation from the clause triggering failure in the
form of l1 ∧ . . . ∧ ln→ ⊥ and let it be the initial explanation

While there is more than one literal propagated in the last level in
the current explanation, take the lastest one w.r.t. the propagation
event, replace it with its explanation from the triggering clause

When there is only one literal uip propagated in the last level in
the current explanation, learn the associated new clause C,
backjump (to the last level of propagated literals in C), propagate
¬uip via the new clause, and continue the exploration

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 57 / 92



Conflict Driven Clause Learning

Exercices

Consider the following formulae

¬a ∨ g¬c
b ∨ ¬c ∨ g
a ∨ ¬d ∨ c
¬g ∨ a ∨ h
¬b ∨ g ∨ d
b ∨ ¬a ∨ ¬h
¬b ∨ a

Apply the two-watched literals algorithm on the branch d, c, ¬g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 58 / 92



Conflict Driven Clause Learning

Conflict Analysis

Why stop with one literal l propagated at the last level ?

To make sure that when the algorithm backjumps,
propagation takes place by making l true

When backjumping using a clause that contains more than one
literal propagated at the last level, then no propagation can be
performed.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 59 / 92



Conflict Driven Clause Learning

Conflict Analysis

Why stop with one literal l propagated at the last level ?

To make sure that when the algorithm backjumps,
propagation takes place by making l true

When backjumping using a clause that contains more than one
literal propagated at the last level, then no propagation can be
performed.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 59 / 92



Conflict Driven Clause Learning

Conflict Analysis

Why stop with one literal l propagated at the last level ?

To make sure that when the algorithm backjumps,
propagation takes place by making l true

When backjumping using a clause that contains more than one
literal propagated at the last level, then no propagation can be
performed.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 59 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h

i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i

j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j

⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 60 / 92



Conflict Driven Clause Learning

Implication Graph

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 61 / 92



Conflict Driven Clause Learning

Conflict Analysis

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬n o

j¬h

g

f, a, b, c, d, e

g, i, k, l,¬m

⊥

o¬n

¬h j

¬j

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 62 / 92



Conflict Driven Clause Learning

Conflict Analysis

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥¬n o

j¬h

g

f, a, b, c, d, e

g, i, k, l,¬m

⊥

o¬n

¬h j

¬j

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 62 / 92



Conflict Driven Clause Learning

Conflict Analysis

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥¬n o

j¬h

g

f, a, b, c, d, e

i, k, l,¬m

⊥

o

¬n

¬h j

¬j

g

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 62 / 92



Conflict Driven Clause Learning

Conflict Analysis

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 63 / 92



Conflict Driven Clause Learning

Conflict analysis

f

a g

b ¬h i j

c k l

d ¬m

e ¬n o ¬j ⊥

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 64 / 92



Conflict Driven Clause Learning

Conflict analysis

f

a g

b ¬h i j

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 64 / 92



Conflict Driven Clause Learning

Conflict analysis

f

a g

b ¬h i j

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i
¬g ∨ h ∨ ¬j ∨ n

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 64 / 92



Conflict Driven Clause Learning

Conflict analysis

f

a g

b ¬h i j n

¬a ∨ ¬f ∨ g
¬a ∨ ¬b ∨ ¬h
a ∨ c
a ∨ ¬i ∨ ¬l
a ∨ ¬k ∨ ¬j
b ∨ d
b ∨ g ∨ ¬n
b ∨ ¬f ∨ n ∨ k
¬c ∨ k
¬c ∨ ¬k ∨ ¬i ∨ l

c ∨ h ∨ n ∨ ¬m
c ∨ l
d ∨ ¬k ∨ l
d ∨ ¬g ∨ l
¬g ∨ n ∨ o
h ∨ ¬o ∨ ¬j ∨ n
¬i ∨ j
¬d ∨ ¬l ∨ ¬m
¬e ∨m ∨ ¬n
¬f ∨ h ∨ i
¬g ∨ h ∨ ¬j ∨ n

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 64 / 92



Conflict Driven Clause Learning

Boosting Search through Randomization and
Restarts [Gomes et al., 1998]

Heavy-tail phenomena (SAT and CP)

At any time during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to solve
than any that has been encountered before.

Hardness = Instance ⊕ deterministic algorithm.

Randomization: breaking ties, random decision between k best
choices, . . .

Restarts: Geometric/Luby

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 65 / 92



Conflict Driven Clause Learning

Boosting Search through Randomization and
Restarts [Gomes et al., 1998]

Heavy-tail phenomena (SAT and CP)

At any time during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to solve
than any that has been encountered before.

Hardness = Instance ⊕ deterministic algorithm.

Randomization: breaking ties, random decision between k best
choices, . . .

Restarts: Geometric/Luby

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 65 / 92



Conflict Driven Clause Learning

Boosting Search through Randomization and
Restarts [Gomes et al., 1998]

Heavy-tail phenomena (SAT and CP)

At any time during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to solve
than any that has been encountered before.

Hardness = Instance ⊕ deterministic algorithm.

Randomization: breaking ties, random decision between k best
choices, . . .

Restarts: Geometric/Luby

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 65 / 92



Conflict Driven Clause Learning

Boosting Search through Randomization and
Restarts [Gomes et al., 1998]

Heavy-tail phenomena (SAT and CP)

At any time during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to solve
than any that has been encountered before.

Hardness = Instance ⊕ deterministic algorithm.

Randomization: breaking ties, random decision between k best
choices, . . .

Restarts: Geometric/Luby

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 65 / 92



Conflict Driven Clause Learning

Restarts

We find in the literature two common restart policies.

Geometric restart: b× fk−1 for the kth restart where b is called a
base and f is called a factor.

Luby restarts follow the sequence 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2,
4, 8, . . . multiplied by a base b. The ith element of the luby
sequence ψi is defined recursively by the formula:

2k−1 if ∃k ∈ N, i = 2k − 1

ψi−2k−1+1 if ∃k ∈ N, 2k−1 ≤ i < 2k − 1

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 66 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity. The activity of a variable is measured by the number of
times it participates in the conflict analysis. Each time a variable
x is used during conflict analysis, its activity is incremented. From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity. The activity of a variable is measured by the number of
times it participates in the conflict analysis. Each time a variable
x is used during conflict analysis, its activity is incremented. From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity.

The activity of a variable is measured by the number of
times it participates in the conflict analysis. Each time a variable
x is used during conflict analysis, its activity is incremented. From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity. The activity of a variable is measured by the number of
times it participates in the conflict analysis.

Each time a variable
x is used during conflict analysis, its activity is incremented. From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity. The activity of a variable is measured by the number of
times it participates in the conflict analysis. Each time a variable
x is used during conflict analysis, its activity is incremented.

From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

Other techniques

Forgetting clauses: The number of the learnt clauses can be
exponential, we sometimes need to free some space by forgetting
some clauses.

VSIDS (Variable State Independent Decaying Sum): VSIDS is a
popular variable ordering heuristic that is based on the notion of
activity. The activity of a variable is measured by the number of
times it participates in the conflict analysis. Each time a variable
x is used during conflict analysis, its activity is incremented. From
time to time, the counters are divided by a constant (to diminish
the effect of early conflicts).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 67 / 92



Conflict Driven Clause Learning

SAT Solvers

MiniSat: http://minisat.se/

Glucose: http://www.labri.fr/perso/lsimon/glucose/

LingeLing http://fmv.jku.at/lingeling

Any Solver by Armin Biere
http://fmv.jku.at/software/index.html

Any winner from past and future SAT competitions:
https://www.satcompetition.org/

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 68 / 92

http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/lingeling
http://fmv.jku.at/software/index.html


Conflict Driven Clause Learning

The DIMACS Format (.cnf files)

A comment line starts with ’c’

The first non comment line should be in the form p cnf X Y where
X is the number of variables and Y is the number of clauses

For instance, with 4 variables and 3 clauses:

p cnf 4 3

Let The list of variables be x1, x2, .., xn. The literal xi is
represented by i and the literal ¬xi is represented by −i.
The clauses are listed line by line where the literals are separated
by a space ” ” and a ”0” is placed at the end to indicate the end of
the clause

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 69 / 92



Conflict Driven Clause Learning

Modelling Exercices

We want to rebuild the wifi coverage in the GEI department

A set of geographical locations G = {g1, . . . gn} has to be covered

Potential installations are defined as subsets of G. Each
installation covers its elements

We want to find a full coverage using the minimum number of
installations

Propose a MaxSAT Model

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 70 / 92



Conflict Driven Clause Learning

Example

p cnf 4 3

2 -4 3 0

1 -2 3 0

-1 -4 -3 0

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 71 / 92



Conflict Driven Clause Learning

SAT vs CSP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 72 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Back to Constraint Programming

A constraint is a finite relation (i.e., a subset of a Cartesian
product)

A constraint can be expressed in extension (table constraint) or
intention (expression)

A constraint network is defined by a triplet P = (X,D,C) where

X is a set of variables
D is a set of domains for the variables in X
C is a set of constraints

The constraint satisfaction problem (CSP) is the problem of
deciding if a constraint network has a solution

Mostly solvable by backtracking algorithms (Search and Filtering)

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 73 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Search

Search

Search: decisions to explore the search tree

Search in CP= variable ordering + value ordering

Standard or customized

Variable Ordering

‘Fail-first’ principle [Haralick and Elliott, 1980]:
“To succeed, try first where you are most likely to fail”

Value Ordering

‘Succeed-first’ [Geelen, 1992]:
“Follow the best chances leading to a solution”

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 74 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.
C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.
C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.
C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.
C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.

C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering

Filtering (propagation/pruning): inferences based on the current
state

Constraint ↔ a propagator

Propagators are executed sequentially before making any decision

The level of pruning ↔ local consistency (for instance, bound
consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in
the scope of C.
C is Arc Consistent (AC) iff for every variable x in the scope of C, for
every value v ∈ D(x), there exists an assignment w in D satisfying C in
which v is assigned to x

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 75 / 92



SAT vs. CP

Filtering algorithm

A Filtering algorithm associated with a constraint C takes as
input a list of domains (for the variables in the scope of C) and
returns a list of domains that are smaller or identical to the
original domains.

For a filtering algorithm to be correct: no consistent value should
be removed (by consistent we mean to belong to a satisfying
assignment).

If each domain is a singleton, the propagator must be able to
check if the assignment corresponds to a solution or not.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 76 / 92



SAT vs. CP

Filtering algorithm

A Filtering algorithm associated with a constraint C takes as
input a list of domains (for the variables in the scope of C) and
returns a list of domains that are smaller or identical to the
original domains.

For a filtering algorithm to be correct: no consistent value should
be removed (by consistent we mean to belong to a satisfying
assignment).

If each domain is a singleton, the propagator must be able to
check if the assignment corresponds to a solution or not.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 76 / 92



SAT vs. CP

Filtering algorithm

A Filtering algorithm associated with a constraint C takes as
input a list of domains (for the variables in the scope of C) and
returns a list of domains that are smaller or identical to the
original domains.

For a filtering algorithm to be correct: no consistent value should
be removed (by consistent we mean to belong to a satisfying
assignment).

If each domain is a singleton, the propagator must be able to
check if the assignment corresponds to a solution or not.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 76 / 92



SAT vs. CP

Filtering algorithm

A Filtering algorithm associated with a constraint C takes as
input a list of domains (for the variables in the scope of C) and
returns a list of domains that are smaller or identical to the
original domains.

For a filtering algorithm to be correct: no consistent value should
be removed (by consistent we mean to belong to a satisfying
assignment).

If each domain is a singleton, the propagator must be able to
check if the assignment corresponds to a solution or not.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 76 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT

CP: rich modelling language, powerful filtering, dedicated search
strategies

SAT: simple input format, clause learning and backjumping,
autonomous search

Every CSP can be encoded into SAT

When should we encode to SAT, when shouldn’t we?

CP vs. SAT: a fundamental difference is the presence of global
reasoning in CP and clause learning in SAT

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 77 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds?

→ Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

CP vs. SAT : To decompose or not to decompose?

Decomposition is the task of reformulating a (global) constraint
into smaller and simpler constraints.

Take the example of AllDifferent: it can be decomposed into
simple binary inequalities. Remember the tutorial!.

In general, decomposition makes the filtering weaker. We
lose the powerful filtering from the global constraints by
decomposing.

On the one hand, by decomposing into clauses, we loose the
powerful filtering from CP

Also the size of the encoding matters. An exponential encoding is
better avoided!

On the other hand, clause learning in SAT is quite powerful to
learn new clauses and to backjump in the search tree

Can we find something that takes advantage from both
worlds? → Clause learning in CP

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 78 / 92



SAT vs. CP

Modern Constraint Solvers: Hybrid CP/SAT

Learning from conflict

Based on the notion of explanation

Generalized Nogoods[Katsirelos and Bacchus, 2005], Lazy Clause
generation [Ohrimenko et al., 2009], Clause Learning in sequencing
and scheduling problems [Siala, 2015], . . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 79 / 92



SAT vs. CP

Modern Constraint Solvers: Hybrid CP/SAT

Learning from conflict

Based on the notion of explanation

Generalized Nogoods[Katsirelos and Bacchus, 2005], Lazy Clause
generation [Ohrimenko et al., 2009], Clause Learning in sequencing
and scheduling problems [Siala, 2015], . . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 79 / 92



SAT vs. CP

Modern Constraint Solvers: Hybrid CP/SAT

Learning from conflict

Based on the notion of explanation

Generalized Nogoods[Katsirelos and Bacchus, 2005], Lazy Clause
generation [Ohrimenko et al., 2009], Clause Learning in sequencing
and scheduling problems [Siala, 2015], . . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 79 / 92



SAT vs. CP

Modern Constraint Solvers: Hybrid CP/SAT

Learning from conflict

Based on the notion of explanation

Generalized Nogoods[Katsirelos and Bacchus, 2005], Lazy Clause
generation [Ohrimenko et al., 2009], Clause Learning in sequencing
and scheduling problems [Siala, 2015], . . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 79 / 92



SAT vs. CP

Modern Constraint Solvers: Hybrid CP/SAT

Learning from conflict

Based on the notion of explanation

Generalized Nogoods[Katsirelos and Bacchus, 2005], Lazy Clause
generation [Ohrimenko et al., 2009], Clause Learning in sequencing
and scheduling problems [Siala, 2015], . . .

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 79 / 92



SAT vs. CP

Learning in CP

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 30
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 2 10
x8 9 30
x9 13 16
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 2 10
x8 9 30
x9 13 16
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 13 16
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 13 16
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 13 16
x9 13 16
x10 2 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 2 2
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 13 16
x9 13 16
x10 2 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 2 2
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 2 2
x4 0 30
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K Jb = 1K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 1 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 5 10
x7 3 10

x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K Jb = 1K Jx6 ≥ 7K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 1 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 7 10
x7 3 10
x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K Jb = 1K Jx6 ≥ 7K ⊥

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 1 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 7 10
x7 3 10
x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K Jb = 1K Jx6 ≥ 7K ⊥

Conflict analysis: Jb = 1K ∧ Jx7 ≥ 3K⇒ ⊥

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 1 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 7 10
x7 3 10
x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Jx2 = 9K Jx10 ≥ 2K

Jx3 = 2K Jx9 = 14K Jx11 ≥ 16K

Jx4 = 0K Jb = 1K Jx6 ≥ 7K ⊥

Conflict analysis: Jb = 1K ∧ Jx7 ≥ 3K⇒ ⊥
New clause: Jb ̸= 1K ∨ Jx7 ≤ 2K

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 1 1
x1 1 1
x2 9 9
x3 2 2
x4 0 0
x5 24 45
x6 7 10
x7 3 10
x8 9 30
x9 14 14
x9 13 16
x10 2 3
x11 16 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K

Conflict analysis: Jb = 1K ∧ Jx7 ≥ 3K⇒ ⊥
New clause: Jb ̸= 1K ∨ Jx7 ≤ 2K
Backtrack to level 1

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 1
x1 1 1
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10
x8 9 30
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K Jb = 0K

Conflict analysis: Jb = 1K ∧ Jx7 ≥ 3K⇒ ⊥
New clause: Jb ̸= 1K ∨ Jx7 ≤ 2K
Backtrack to level 1

Propagate the learnt clause

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 0
x1 1 1
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10
x8 9 30
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Learning in CP

Jx1 = 1K Jx7 ≥ 3K Jb = 0K

Conflict analysis: Jb = 1K ∧ Jx7 ≥ 3K⇒ ⊥
New clause: Jb ̸= 1K ∨ Jx7 ≤ 2K
Backtrack to level 1

Propagate the learnt clause

Continue exploration

x1 + x7 ≥ 4∧
x2 + x10 ≥ 11∧
x3 + x9 = 16∧
x5 ≥ x8 + x9∧
b↔ (x9 − x4 = 14)∧
b→ (x6 ≥ 7)∧
b→ (x6 + x7 ≤ 9)∧
x11 ≥ x9 + x10

b 0 0
x1 1 1
x2 9 30
x3 0 3
x4 0 30
x5 24 45
x6 5 10
x7 3 10
x8 9 30
x9 13 16
x10 0 3
x11 15 25

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 80 / 92



SAT vs. CP

Conflict analysis

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 81 / 92



SAT vs. CP

Explaining constraints

To enable clause learning in CP, each propagator must be able to
explain its filtering in the form of clauses (“Lazy Clause
Generation”).

We distinguish two types of explanations:

Explaining Failure
Explaining Domain filtering

Example: Explain the constraint X ≤ Y with two scenarios
(failure and propagation).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 82 / 92



SAT vs. CP

Explaining constraints

To enable clause learning in CP, each propagator must be able to
explain its filtering in the form of clauses (“Lazy Clause
Generation”).

We distinguish two types of explanations:

Explaining Failure
Explaining Domain filtering

Example: Explain the constraint X ≤ Y with two scenarios
(failure and propagation).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 82 / 92



SAT vs. CP

Explaining constraints

To enable clause learning in CP, each propagator must be able to
explain its filtering in the form of clauses (“Lazy Clause
Generation”).

We distinguish two types of explanations:

Explaining Failure
Explaining Domain filtering

Example: Explain the constraint X ≤ Y with two scenarios
(failure and propagation).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 82 / 92



SAT vs. CP

Explaining constraints

To enable clause learning in CP, each propagator must be able to
explain its filtering in the form of clauses (“Lazy Clause
Generation”).

We distinguish two types of explanations:

Explaining Failure
Explaining Domain filtering

Example: Explain the constraint X ≤ Y with two scenarios
(failure and propagation).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 82 / 92



SAT vs. CP

Explaining constraints

To enable clause learning in CP, each propagator must be able to
explain its filtering in the form of clauses (“Lazy Clause
Generation”).

We distinguish two types of explanations:

Explaining Failure
Explaining Domain filtering

Example: Explain the constraint X ≤ Y with two scenarios
(failure and propagation).

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 82 / 92



SAT vs. CP

Let (x1, . . . , xn) be a sequence of Boolean variables, and let d be a
positive integer.

The CARDINALITY(x1, . . . , xn, d) constraint holds iff exactly d
variables from the sequence (x1, . . . , xn) are true.

Write a filtering algorithm for CARDINALITY.

What is the time complexity?

Does it enforce arc consistency?

Explain the CARDINALITY filtering.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 83 / 92



SAT vs. CP

Correction

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 84 / 92



SAT vs. CP

Explaining The Cardinality Constraint

Failure 1:
x1 ∧ x2 ∧ . . . ∧ xd+1→ ⊥

Where D(xi) = {1}
Failure 2:

¬x1 ∧ ¬x2 ∧ ¬xn−d+1→ ⊥

Where D(xi) = {0}
Explaining the propagating of the value 1: the conjunction of all
the assigned variables

Explaining the propagating of the value 0: the conjunction of all
the assigned variables

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 85 / 92



SAT vs. CP

Explaining The Cardinality Constraint

Failure 1:
x1 ∧ x2 ∧ . . . ∧ xd+1→ ⊥

Where D(xi) = {1}

Failure 2:
¬x1 ∧ ¬x2 ∧ ¬xn−d+1→ ⊥

Where D(xi) = {0}
Explaining the propagating of the value 1: the conjunction of all
the assigned variables

Explaining the propagating of the value 0: the conjunction of all
the assigned variables

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 85 / 92



SAT vs. CP

Explaining The Cardinality Constraint

Failure 1:
x1 ∧ x2 ∧ . . . ∧ xd+1→ ⊥

Where D(xi) = {1}
Failure 2:

¬x1 ∧ ¬x2 ∧ ¬xn−d+1→ ⊥

Where D(xi) = {0}
Explaining the propagating of the value 1: the conjunction of all
the assigned variables

Explaining the propagating of the value 0: the conjunction of all
the assigned variables

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 85 / 92



SAT vs. CP

Explaining The Cardinality Constraint

Failure 1:
x1 ∧ x2 ∧ . . . ∧ xd+1→ ⊥

Where D(xi) = {1}
Failure 2:

¬x1 ∧ ¬x2 ∧ ¬xn−d+1→ ⊥

Where D(xi) = {0}
Explaining the propagating of the value 1: the conjunction of all
the assigned variables

Explaining the propagating of the value 0: the conjunction of all
the assigned variables

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 85 / 92



SAT vs. CP

Encoding CSP into SAT

How to encode the variables’ domain ?

How to encode each constraint into a set of clauses ?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 86 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}

Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn

For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj

As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj

The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Quadratic Encoding

Suppose that D(x) = {v1, . . . , vn}
Let xi be a Boolean variable that is true if x == xi

x1 ∨ . . . ∨ xn
For each 1 ≤ i < j ≤ n, encode xi ̸= xj

That is, xi→¬xj
As a clause: ¬xi ∨ ¬xj
The number of variables is linear

The number of clauses is quadratic

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 87 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}

Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn

yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Domain Encoding: Linear Encoding

Suppose that D(x) = {1, . . . , n}
Let xi be a Boolean variable that is true if x == i

Let yj be a Boolean variable that is true if x ≤ j where
j ∈ [1, . . . n]

x1 ∨ . . . ∨ xn
yj→yj+1

xi →yi ∧ ¬yi−1

The number of variables is linear in the size of the domain

The number of clauses is linear. However, some clauses are of arity
three

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 88 / 92



SAT vs. CP

Exercise: Constraint encoding ?

How to encode the AllDifferent constraint ?

How to encode
∑

iXi ≤ k (Xi is an integer variable)?

How to encode
∑

i ai ×Xi ≤ k ?

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 89 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

Take Away Message

SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP,
Pseudo-Boolean) are efficient tools to solve hard combinatorial
problems

When you master one or few techniques, it opens the door to work
on diverse problems. The more you apply to different problems,
the more you learn

The choice depends on the problem at hand (is it easy to linearise?
what is the size of the SAT encoding? Can we use/invent global
constraints?, etc)

You don’t need to implement a solver: use existing ones! check the
different solver competitions

Hybrid approaches are the future: take advantage of diverse
methodologies

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 90 / 92



SAT vs. CP

References I

Davis, M., Logemann, G., and Loveland, D. (1962).
A Machine Program for Theorem-proving.
Communications of the ACM, 5(7):394–397.

Gomes, C. P., Selman, B., and Kautz, H. (1998).
Boosting Combinatorial Search Through Randomization.
In Proceedings of the 15th National Conference on Artificial Intelligence, AAAI’98,
and the 10th Conference on Innovative Applications of Artificial Intelligence,
IAAI’98, Madison, Wisconsin, pages 431–437.

Katsirelos, G. and Bacchus, F. (2005).
Generalized NoGoods in CSPs.
In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI’05,
and the 17th Conference on Innovative Applications of Artificial Intelligence,
IAAI’05, Pittsburgh, Pennsylvania, USA, pages 390–396.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001).
Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Annual Design Automation Conference, DAC’01, Las
Vegas, Nevada, USA, pages 530–535.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 91 / 92



SAT vs. CP

References II

Ohrimenko, O., Stuckey, P. J., and Codish, M. (2009).
Propagation via Lazy Clause Generation.
Constraints, 14(3):357–391.

Robinson, J. A. (1965).
A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41.

Siala, M. (2015).
Search, propagation, and learning in sequencing and scheduling problems. (Recherche,
propagation et apprentissage dans les problèmes de séquencement et
d’ordonnancement).
PhD thesis, INSA Toulouse, France.

Silva, J. a. P. M. and Sakallah, K. A. (1999).
Grasp: a search algorithm for propositional satisfiability.
Computers, IEEE Transactions on, 48(5):506–521.

Mohamed Siala (Toulouse) INSA-Toulouse January 27, 2024 92 / 92


	 Introduction & Context 
	Modelling
	Conflict Driven Clause Learning
	SAT vs. CP

